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Groupoids and Puzzles



Rubik’s Cubes

Goal: Obtain a certain arrangement by performing a correct

sequence of transformations.

Question: How do we view the transformations of a Rubik’s Cube

as a group?

Let F, B, L, R,U, andD denote 90° clockwise rotations of the 6
faces of the cube.

These rotations – modulo some relations – generate the Rubik’s Cube group.

This group has approximately 4.33 × 1019 elements!

The fastest ever solve of a scrambled Rubik’s cube is 3.05 seconds.
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The Fifteen Puzzle

Goal: Obtain a certain arrangement by performing a correct

sequence of transformations.

Question: Do the transformations of the Fifteen Puzzle also have

a group-like structure?

Transformations of the Fifteen Puzzle are compositions of

movements of the blank square in any of the directions Up,

Down, Left, or Right, from any of the 16 different spaces.

There are approximately 1.67 × 1014 different transformations of the Fifteen Puzzle!

Problem: Unlike the Rubik’s Cube, the possible transformations depend on the current state.

The transformations do not form a group because we can only compose two transformations

if the ending position of the first is the starting position of the second.
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What is a groupoid?

A groupoid G is a small category in which every morphism γ has a unique inverse γ−1.

Each γ ∈ G has a range r(γ) = γγ−1 and a source s(γ) = γ−1γ.

Composition (α,β) 7→ αβ is only defined on the set of composable pairs

G(2) =
{
(α,β) ∈ G× G | s(α) = r(β)

}
⊆ G× G.

The elements of the unit space G(0) = r(G) = s(G) behave like identities wherever

composition is defined.

Examples

If G(0) is a singleton set, then G(2) = G× G, and thus G is a group.

IfG1, . . . ,Gn are groups, then G :=
⊔n

i=1 Gi is a groupoid with G(0) =
{
idGi

}n

i=1.
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Groups and groupoids

A groupoid is a generalisation of a group withmultiple identities (“dots”) and partially

defined multiplication (“concatenating arrows”).
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Groupoid example: equivalence relations

Let X be a set. An equivalence relation R ⊆ X× X is a groupoid with

inverses: (x,y)−1 = (y, x) ∈ R for all (x,y) ∈ R;

composable pairs: R(2) =
{(

(x,y), (w, z)
)
∈ R× R | y = w

}
;

composition: (x,y)(y, z) = (x, z) ∈ R;

range and source maps: r(x,y) = (x, x) and s(x,y) = (y,y);

unit space: R(0) = r(R) = {(x, x) | x ∈ X} ∼= X.
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Groupoid example: group actions

Suppose thatG is a group acting on some set X.

Then Gn X := G× X is a groupoid with unit space

{idG}× X ∼= X.

Each (g, x) ∈ Gn X is a morphism with source x and

range g · x.

Composition is given by (h,g · x)(g, x) = (hg, x).

(idG, x)
x

(g, x)

(g, x)−1 =
(g−1,g · x)

g · x

(h,g · x)

(hg, x)
h · (g · x)
= (hg) · x

Each (g, x) ∈ Gn X has a unique inverse (g, x)−1 = (g−1,g · x) ∈ Gn X.
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A groupoid model for the Fifteen Puzzle

The groupoid associated to the Fifteen Puzzle consists of all possible

transformations from one state to another, obtained by composing Up,

Down, Left, Right, and trivial movements of the blank square.

Each transformation has a unique inverse. The unit space is the set of

the 16 possible positions of the blank square.

Two transformations are equivalent if they have the same starting and ending positions for

the blank square and they affect all of the numbered pieces in the same way.

Two transformations can only be composed if the ending position of the first is the starting

position of the second.
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Isotropy: groups within a groupoid

Let G be a groupoid. For each x ∈ G(0), the set

Iso(G)x := {γ ∈ G | r(γ) = s(γ) = x}

is called the isotropy group of G at x.

The isotropy groupoid of G is the subgroupoid

Iso(G) :=
⊔

x∈G(0)

Iso(G)x ⊆ G.

Examples

If G is a group, then Iso(G) = G.

If R ⊆ X× X is an equivalence relation, then Iso(R) = {(x, x) | x ∈ X} = R(0) ∼= X.

IfG y X, then Iso(Gn X) = {(g, x) ∈ G× X | g · x = x} ∼=
⊔

x∈X StabG(x).
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A solution strategy for the Fifteen Puzzle

The basic idea is to take advantage of isotropy groups for several simpler sub-puzzles.

Each isotropy group of the Three Puzzle is the cyclic group of order 3.

To solve the Three Puzzle, rotate the blank square clockwise (or

anticlockwise) until the correct arrangement is obtained.

The Five Puzzle can be viewed as two overlapping Three Puzzles.

To solve the Five Puzzle, solve the left and right copies of the Three

Puzzle using transformations that keep the blank square in the

bottom middle position.
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An algorithm for solving the Fifteen Puzzle

To solve the Fifteen Puzzle:

1. Move the 1 and 2 tiles into their correct positions.

2. Play the Three Puzzle multiple times to position the 3, 4, 5, 6, 7,
and 8 tiles. (The tricky part here is making sure that you form

solvable Three Puzzles.)

3. Play the Five Puzzle in the lower left region to position the 9 and

13 tiles.

4. Play the Five Puzzle in the lower right region to position the

remaining tiles.
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My research: twisted groupoid algebras

groupoids

+ twists

twisted
groupoid

C*-algebras

twisted
Steinberg
algebras
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∗-algebras

A ∗-algebra is a vector space over C (or a module over a ring with an involution) with an

associative multiplication and an involution ∗ that is conjugate-linear and antimultiplicative.

Examples

C with complex conjugation as the involution.

Mn(C) with the adjoint (conjugate transpose) as the involution.

C[x] = spanC{xn | n ∈ N} with coordinatewise complex conjugation as the involution.

If R is a commutative unital ring with an involution †, then R[x] = spanR{xn | n ∈ N} is a

∗-algebra over R with involution given by
( N∑
n=0

rn xn
)∗

=

N∑
n=0

r†n xn.
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C*-algebras

A C*-algebra is a ∗-algebraA over C that is complete with respect to a submultiplicative

norm (i.e. ‖ab‖ 6 ‖a‖‖b‖) that satisfies the C*-identity: ‖a∗a‖ = ‖a‖2
for all a ∈ A.

Examples

Algebra Involution Norm

C complex conjugation magnitude

Mn(C) ∼= B(Cn) conjugate transpose operator norm

C(X) for a compact Hausdorff

space X, or C0(Y) for a locally

compact Hausdorff space Y

pointwise complex

conjugation
uniform norm

B(H), the bounded linear

operators on a Hilbert spaceH
adjoint operator norm
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The Gelfand–Naimark theorem

Theorem (Gelfand–Naimark 1943, Gelfand–Naimark–Segal 1947)

(a) Every C*-algebra is isomorphic to a norm-closed *-subalgebra of the bounded linear

operators on a Hilbert space. (We can explicitly construct the Hilbert space and the

isomorphism through a process called the GNS construction.)

(b) Every commutative C*-algebra is isomorphic to C0(X) for some locally compact

Hausdorff space X.

Informally: A C*-algebra can be thought of as a collection of infinite-dimensional matrices.

Becky Armstrong (VUW, NZ) 17 28



C*-algebras and the Gelfand–Naimark theorem
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Group ∗-algebras

LetG be a discrete group. The collection C[G] of finitely supported C-valued functions on G

is a vector space under pointwise operations, with a basis {δx | x ∈ G} of point mass

functions

δx(y) =

{
1 if x = y

0 if x 6= y.

For all x,y ∈ G, define

δx ∗ δy := δxy and δ∗x := δx−1 .

Extending this convolution product and involution to all of C[G] turns C[G] into a ∗-algebra
over C with identity δidG

. For f,g ∈ C[G] and x ∈ G, we have

(f ∗ g)(x) =
∑
y∈G

f(y)g(y−1x) and f∗(x) = f(x−1).
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Unitary representations

We can “complete” the ∗-algebra C[G] with respect to various C*-norms to obtain

C*-algebras. To do this, we make use of unitary representations ofG.

Definition

LetA be a ∗-algebra with identity 1A. The set

U(A) :=
{
u ∈ A | u∗u = uu∗ = 1A

}
is a subgroup ofA, and we call elements of U(A) unitaries.

A unitary representation of a group G inA is a homomorphism u : G → U(A).

We have δx ∈ U(C[G]) for each x ∈ G, so x 7→ δx is a unitary representation ofG in C[G].
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The full group C*-algebra

If u : G → U(A) is a unitary representation ofG in a unital C*-algebraA, then the map

δx 7→ ux extends linearly to a unital ∗-representation πu : C[G] → A.

The full norm on C[G] is the C*-norm

‖f‖ := sup
{
‖πu(f)‖A | u : G → U(A) is a unitary representation

}
.

Completing C[G] with respect to this norm gives the full group C*-algebra C∗(G).

Becky Armstrong (VUW, NZ) 21 28



The reduced group C*-algebra

The left-regular representation λ : G → U
(
B(`2(G))

)
characterised by λx(δy) := δxy for

x,y ∈ G induces a faithful (i.e. injective) representation πλ : C[G] → B(`2(G)).

The reduced norm on C[G] is the C*-norm given by ‖f‖r := ‖πλ(f)‖op. Completing C[G] with
respect to this norm gives the reduced group C*-algebra C∗

r(G).

Definition

A discrete group G is amenable if it admits a finitely additive left-invariant probability

measure.

Theorem (Hulanicki 1966)

A discrete groupG is amenable if and only if C∗(G) = C∗
r(G).
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Topological groupoids

We call a groupoid G a topological groupoid if it has a topology with respect to which

multiplication and inversion are continuous.

Throughout, G will be a locally compact Hausdorff groupoid.

We call an open subset B of G an open bisection if r|B and s|B are homeomorphisms onto

open subsets of G.

We say that G is étale if it has a basis of open bisections.

We say that G is ample if it has a basis of compact open bisections (called “cobs”).

Becky Armstrong (VUW, NZ) 23 28



The full groupoid C*-algebra

Let G be a locally compact Hausdorff étale groupoid. The collection Cc(G) of compactly

supported C-valued functions on G is a vector space under pointwise operations.

We define a convolution product and involution on Cc(G) by

(f ∗ g)(α) :=
∑

β∈r(α)G

f(β)g(β−1α) and f∗(α) := f(α−1).

Under these operations, Cc(G) is a ∗-algebra. The full groupoid C*-algebra C∗(G) is the
completion of Cc(G) with respect to the full norm, which is given by

‖f‖ := sup
{
‖π(f)‖ | π is a ∗-representation of Cc(G)

}
.
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The reduced groupoid C*-algebra

For each x ∈ G(0), define πx : Cc(G) → B
(
`2(Gx)

)
by πx(f)g = f ∗ g for all f ∈ Cc(G) and

g ∈ `2(Gx). Each πx is a ∗-representation, called a left-regular representation of Cc(G).

The reduced groupoid C*-algebra C∗
r(G) is the completion of Cc(G) with respect to the

reduced norm, which is given by

‖f‖r := sup
{
‖πx(f)‖op | x ∈ G(0)}.

Theorem (Renault 1980 & Willett 2015)

If G is an amenable Hausdorff étale groupoid, then C∗(G) = C∗
r(G). The converse is false.
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Steinberg algebras

Let G be an ample Hausdorff groupoid, and let R be a commutative unital ring. Define

AR(G) := spanR
{

1B : G → R : B ⊆ G is a cob
}
= {f ∈ Cc(G,R) : f is locally constant}.

ThenAR(G) is an R-module under pointwise operations. For all cobs X, Y ⊆ G, define

1X ∗ 1Y = 1XY and 1∗X = 1X−1 .

Extending this convolution product and involution to all ofAR(G) turnsAR(G) into a

∗-algebra over R, called the Steinberg algebra of G.

Let R = Cd, the complex numbers with the discrete topology. ThenACd
(G) is a ∗-subalgebra

of Cc(G), and completingACd
(G) with respect to the full/reduced norm gives the

full/reduced groupoid C*-algebra of G.
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Questions (next lecture)

What is a twisted groupoid?

Structure theory: What does the underlying groupoid tell us about the structure of the

associated C*-algebras or Steinberg algebra?

Reconstruction theory: Which C*-algebras or ∗-algebras can be built from twisted

groupoids?
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