

Symmetries in noncommuting variables: **in** and **out**

Part One

Jurij Volčič

University of Auckland

NZMRI 2026

The plan

- ▶ Connecting tissue for the two talks
- ▶ Joint similarity problem: old and new
- ▶ Separating invariants
- ▶ ToDo

Functions in several operator variables

$$f(X, Y) = X^{-1/2} Y X Y X^{-1/2} - Y^2$$

for $n \times n$ matrices X, Y , or operators X, Y

- ▶ analysis
- ▶ probability
- ▶ geometry
- ▶ dependence on n
- ▶ optimisation
- ▶ ...

Main source of challenges / excitement:
noncommuting variables dimensionless phenomena

Symmetries and invariants in nc variables

two types

(1) symmetries of arguments

(X, Y) and (SXS^{-1}, SYS^{-1}) represent the same pair of operators

general linear / unitary group acting on tuples of matrices by conjugation

$$\mathrm{GL}_n, \mathrm{U}_n \curvearrowright \mathrm{M}_n(\mathbb{C})^2$$

(2) symmetries of functions

$f(X, Y) = X^2 - XY - YX + Y^2$ is symmetric under $X \leftrightarrow Y$

finite group acting on suitable functions/expressions in x, y

$$G \curvearrowright \mathbb{C}\{x, y\}$$

Similarity

students' "favourite" topic

$X, Y \in M_m(\mathbb{C})$ are **similar** if $Y = SXS^{-1}$ for some $S \in GL_m(\mathbb{C})$

- ▶ **Jordan canonical form**
- ▶ **Weyr characteristic**: X, Y similar iff

$$\text{rk}(X - \lambda I)^r = \text{rk}(Y - \lambda I)^r \quad \forall \lambda \in \mathbb{C}, r \in \mathbb{N}$$

functions $X \mapsto \text{rk}(X - \lambda I)^r$ are separating invariants

Joint similarity

n -tuples of matrices

$X, Y \in M_m(\mathbb{C})^n$ are **(jointly) similar** if for some $S \in GL_m(\mathbb{C})$,

$$Y_j = SX_j S^{-1} \quad \text{for } j = 1, \dots, n$$

Shortly: $Y = SXS^{-1}$, $X \sim Y$

Operator theory, representation theory, invariant theory ...
want to understand matrix tuples up to similarity

The easy and the hard aspect of similarity

Easy: given X and Y , decide whether they are similar

Probabilistic: solve the linear system $Y_1S = SX_1, \dots, Y_nS = SX_n$
in S , check if the generic solution is invertible

Deterministic: isomorphism of modules in polynomial time

The easy and the hard aspect of similarity

Easy: given X and Y , decide whether they are similar

Probabilistic: solve the linear system $Y_1 S = S X_1, \dots, Y_n S = S X_n$
in S , check if the generic solution is invertible

Deterministic: isomorphism of modules in polynomial time

Hard: canonical form ?? $(n \geq 2)$

Hopeless! Drozd⁷⁷, LeBruyn⁹⁷

classification of matrix tuples up to similarity is a **wild problem**

Friedland⁸³: iterative procedure à la quantifier elimination
“*up to finitely many exceptions*”

Gelfand reduction

the “simplest” version of a wild problem

Gelfand-Ponomarev⁶⁹, Nathanson⁸⁰:

Classification of n -tuples of matrices up to \sim , for $n \geq 2$

Classification of pairs of commuting jointly 3-nilpotents up to \sim

X_1, X_2 such that $X_1X_2 = X_2X_1$ and $X_1^3 = X_1^2X_2 = X_1X_2^2 = X_2^3 = 0$

reps of the 6-dim commutative algebra $\mathbb{C}[x_1, x_2]/(x_1^3, x_1^2x_2, x_1x_2^2, x_2^3)$

Gelfand reduction

the “simplest” version of a wild problem

Gelfand-Ponomarev⁶⁹, Nathanson⁸⁰:

Classification of n -tuples of matrices up to \sim , for $n \geq 2$

Classification of pairs of commuting jointly 3-nilpotents up to \sim

X_1, X_2 such that $X_1X_2 = X_2X_1$ and $X_1^3 = X_1^2X_2 = X_1X_2^2 = X_2^3 = 0$

reps of the 6-dim commutative algebra $\mathbb{C}[x_1, x_2]/(x_1^3, x_1^2x_2, x_1x_2^2, x_2^3)$

pairs of commuting jointly 2-nilpotent matrices: **tame**

Šivic

The middle ground - separating invariants

Task: find a **natural** collection of separating invariants $\{f_\alpha\}_\alpha$,

$$X \sim Y \iff f_\alpha(X) = f_\alpha(Y) \quad \forall \alpha$$

E.g., for $n = 1$ take $f_{\lambda,r}(X) = \text{rk}(X - \lambda I)^r$

Joint unitary similarity

for comparison

$X, Y \in M_m(\mathbb{C})^n$ are **unitarily similar** if there is a unitary $S \in U_m(\mathbb{C})$ such that $Y = SXS^*$

Joint unitary similarity

for comparison

$X, Y \in M_m(\mathbb{C})^n$ are **unitarily similar** if there is a unitary $S \in U_m(\mathbb{C})$ such that $Y = SXS^*$

Wiegmann⁶⁵, Procesi⁷⁶:

X, Y are unitarily similar iff

$$\operatorname{tr} w(X, X^*) = \operatorname{tr} w(Y, Y^*)$$

for all products $w = w(x_1, \dots, x_n, x_1^*, \dots, x_n^*)$ of length $\leq m^2$

Closed/non-closed orbits

$U_m(\mathbb{C})$ is a compact group, its orbits in $M_m(\mathbb{C})^n$ are closed,
 $\overline{X^{U_m}} = X^{U_m}$

Orbits of $GL_m(\mathbb{C})$ are not closed in general,

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \lim_{t \rightarrow \infty} \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix} = \lim_{t \rightarrow \infty} \begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix}^{-1},$$

so $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \notin \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^{GL_2}$ but $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in \overline{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^{GL_2}}$

Closedness and smoothness

$X \in M_m(\mathbb{C})^n$ is **irreducible** if X_1, \dots, X_n don't have a common invariant subspace (**Burnside**: they generate $M_m(\mathbb{C})$ as an algebra)

Closedness and smoothness

$X \in M_m(\mathbb{C})^n$ is **irreducible** if X_1, \dots, X_n don't have a common invariant subspace (**Burnside**: they generate $M_m(\mathbb{C})$ as an algebra)

Artin⁶⁹: X^{GL_m} is closed iff X is a direct sum of irreducibles;
each orbit contains a unique closed orbit, $\left(\begin{smallmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{smallmatrix} \right) \in \overline{\left(\begin{smallmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{smallmatrix} \right)^{GL}}$

Closedness and smoothness

$X \in M_m(\mathbb{C})^n$ is **irreducible** if X_1, \dots, X_n don't have a common invariant subspace (Burnside: they generate $M_m(\mathbb{C})$ as an algebra)

Artin⁶⁹: X^{GL_m} is closed iff X is a direct sum of irreducibles;
each orbit contains a unique closed orbit, $\begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{pmatrix} \in \overline{\begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix}^{\text{GL}_m}}$

Procesi, Razmyslov⁷⁶: X^{GL_m} and Y^{GL_m} contain the same closed orbit iff $\text{tr } w(X) = \text{tr } w(Y)$ for all products w of length $\leq m^2$

Closedness and smoothness

$X \in M_m(\mathbb{C})^n$ is **irreducible** if X_1, \dots, X_n don't have a common invariant subspace (**Burnside**: they generate $M_m(\mathbb{C})$ as an algebra)

Artin⁶⁹: X^{GL_m} is closed iff X is a direct sum of irreducibles;
each orbit contains a unique closed orbit, $\begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{pmatrix} \in \overline{\begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix}^{\text{GL}_m}}$

Procesi, Razmyslov⁷⁶: X^{GL_m} and Y^{GL_m} contain the same closed orbit iff $\text{tr } w(X) = \text{tr } w(Y)$ for all products w of length $\leq m^2$

LeBruyn-Procesi⁰⁶: closed GL_m -orbits in $M_m(\mathbb{C})$ form a variety, its smooth points are precisely the orbits of irreducibles

Separating orbit closures

$\overline{X^{\text{GL}} \cap Y^{\text{GL}}} \neq \emptyset$: traces of products

Procesi, Razmyslov

$X^{\text{GL}} \subseteq \overline{Y^{\text{GL}}}$: **open!** (will get back to it)

$X^{\text{GL}} = Y^{\text{GL}}$: equivalent to $X^{\text{GL}} \subseteq \overline{Y^{\text{GL}}}$ and $Y^{\text{GL}} \subseteq \overline{X^{\text{GL}}}$;
can't hope for continuous separating invariants, but still...

Curto-Herrero conjecture

Noncommutative polynomials: $\mathbb{C}\langle x_1, \dots, x_n \rangle$

e.g. $x_1 x_2 x_1^2 - x_2 x_1 + x_1 x_2 - 3$

Curto-Herrero conjecture

Noncommutative polynomials: $\mathbb{C}\langle x_1, \dots, x_n \rangle$

e.g. $x_1x_2x_1^2 - x_2x_1 + x_1x_2 - 3$

Conjecture (Curto-Herrero⁸⁵)

Let $X, Y \in M_m(\mathbb{C})^n$. Then $X \sim Y$ iff

$$\operatorname{rk} f(X) = \operatorname{rk} f(Y)$$

for all $f \in \mathbb{C}\langle x_1, \dots, x_n \rangle$.

Curto-Herrero conjecture

Noncommutative polynomials: $\mathbb{C}\langle x_1, \dots, x_n \rangle$

e.g. $x_1x_2x_1^2 - x_2x_1 + x_1x_2 - 3$

Conjecture (Curto-Herrero⁸⁵)

Let $X, Y \in M_m(\mathbb{C})^n$. Then $X \sim Y$ iff

$$\operatorname{rk} f(X) = \operatorname{rk} f(Y)$$

for all $f \in \mathbb{C}\langle x_1, \dots, x_n \rangle$.

- ▶ $f(SXS^{-1}) = Sf(X)S^{-1}$, so \implies is the easy one
- ▶ true for $n = 1$ (JCF, Weyr characteristic)
- ▶ true for $m = 2$ Curto-Herrero
- ▶ true if X is a direct sum of irreducibles Klep-Helton-V¹⁸

Hadwin-Larson amendment

Curto-Herrero Conj is **false**:

$$X_1 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad X_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \quad Y_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad Y_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Hadwin-Larson amendment

Curto-Herrero Conj is **false**:

$$X_1 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad X_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \quad Y_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad Y_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Conjecture (Hadwin-Larson⁰³)

Let $X, Y \in M_m(\mathbb{C})^n$. Then $X \sim Y$ iff

$$\text{rk } F(X) = \text{rk } F(Y)$$

for all *square matrices* F over $\mathbb{C}\langle x_1, \dots, x_n \rangle$.

Hadwin-Larson amendment

Curto-Herrero Conj is **false**:

$$X_1 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad X_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \quad Y_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad Y_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Conjecture (Hadwin-Larson⁰³)

Let $X, Y \in M_m(\mathbb{C})^n$. Then $X \sim Y$ iff

$$\operatorname{rk} F(X) = \operatorname{rk} F(Y)$$

for all *square matrices* F over $\mathbb{C}\langle x_1, \dots, x_n \rangle$.

- ▶ $F(SXS^{-1}) = (I \otimes S)F(X)(I \otimes S)^{-1}$, so \implies is still easy
- ▶ for the above counterex and $F = \begin{pmatrix} x_1 & x_2 \\ 0 & 0 \end{pmatrix}$,
 $\operatorname{rk} F(X) = 2 \neq 1 = \operatorname{rk} F(Y)$

Ranks of affine matrix pencils

Hadwin-Larson Conj is true

Affine matrices over $\mathbb{C}\langle x_1, \dots, x_n \rangle$ are called affine matrix pencils:

$$F = A_0 + A_1 x_1 + \cdots + A_n x_n,$$

$$F(X) = A_0 \otimes I + A_1 \otimes x_1 + \cdots + A_n \otimes x_n$$

Ranks of affine matrix pencils

Hadwin-Larson Conj is true

Affine matrices over $\mathbb{C}\langle x_1, \dots, x_n \rangle$ are called affine matrix pencils:

$$F = A_0 + A_1 x_1 + \cdots + A_n x_n,$$

$$F(X) = A_0 \otimes I + A_1 \otimes x_1 + \cdots + A_n \otimes x_n$$

Theorem (Derksen-Klep-Makam-V²³)

Let $X, Y \in M_m(\mathbb{C})^n$. Then $X \sim Y$ iff

$$\operatorname{rk} F(X) = \operatorname{rk} F(Y)$$

for all $mn \times mn$ affine matrix pencils F .

module extensions & degenerations: Auslander, Bongartz, Smalø...

Analogous for $U_m(\mathbb{C})$, $O_m(\mathbb{C})$, $Sp_m(\mathbb{C})$, $GL_m(\mathbb{C}) \times GL_m(\mathbb{C})$

One-sided version?

Conjecture (Hadwin-Larson⁰³)

Let $X, Y \in M_m(\mathbb{C})^n$. Then $X \in \overline{Y^{\text{GL}_m}}$ iff

$$\text{rk } F(X) \leq \text{rk } F(Y)$$

for all square matrices F over $\mathbb{C}\langle x_1, \dots, x_n \rangle$.

- ▶ $X \in \overline{Y^{\text{GL}}}$ and $Y \in \overline{X^{\text{GL}}} \iff X \sim Y$
- ▶ \implies still easy as rank is lower semicontinuous

One-sided version?

Conjecture (Hadwin-Larson⁰³)

Let $X, Y \in M_m(\mathbb{C})^n$. Then $X \in \overline{Y^{\text{GL}_m}}$ iff

$$\text{rk } F(X) \leq \text{rk } F(Y)$$

for all square matrices F over $\mathbb{C}\langle x_1, \dots, x_n \rangle$.

- ▶ $X \in \overline{Y^{\text{GL}}}$ and $Y \in \overline{X^{\text{GL}}} \iff X \sim Y$
- ▶ \implies still easy as rank is lower semicontinuous

... is **false**

An example

Carlson: $X, Y \in M_4(\mathbb{C})^2$ with $X \notin \overline{Y^{\text{GL}}}$ but $\text{rk } F(X) \leq \text{rk } F(Y)$

$$X_1 = X_2 = Y_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad Y_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

An example

Carlson: $X, Y \in M_4(\mathbb{C})^2$ with $X \notin \overline{Y^{\text{GL}}}$ but $\text{rk } F(X) \leq \text{rk } F(Y)$

$$X_1 = X_2 = Y_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad Y_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

If ζ_{ij}, ξ_{ij} denote the coordinates of $M_4(\mathbb{C}) \times M_4(\mathbb{C})$, then

$$p = \zeta_{43}\xi_{21} - \zeta_{41}\xi_{23} - \zeta_{23}\xi_{41} + \zeta_{21}\xi_{43}$$

satisfies $p(PYP^{-1}) = 0$ for all $P \in \text{GL}_4(\mathbb{C})$, and $p(X) = 2$

An example

Carlson: $X, Y \in M_4(\mathbb{C})^2$ with $X \notin \overline{Y^{\text{GL}}}$ but $\text{rk } F(X) \leq \text{rk } F(Y)$

$$X_1 = X_2 = Y_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad Y_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

If ζ_{ij}, ξ_{ij} denote the coordinates of $M_4(\mathbb{C}) \times M_4(\mathbb{C})$, then

$$p = \zeta_{43}\xi_{21} - \zeta_{41}\xi_{23} - \zeta_{23}\xi_{41} + \zeta_{21}\xi_{43}$$

satisfies $p(PYP^{-1}) = 0$ for all $P \in \text{GL}_4(\mathbb{C})$, and $p(X) = 2$

There is $P_\varepsilon \in \text{GL}_5(\mathbb{C})$ such that $X \oplus 0 = \lim_{\varepsilon \rightarrow 0} P_\varepsilon(Y \oplus 0)P_\varepsilon^{-1}$.

$$P_\varepsilon = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & \varepsilon^2 & 0 & 0 \\ 0 & 0 & 0 & \varepsilon^2 & 0 \\ 0 & \varepsilon & -\varepsilon & 0 & 0 \end{pmatrix}$$

An example

Carlson: $X, Y \in M_4(\mathbb{C})^2$ with $X \notin \overline{Y^{\text{GL}}}$ but $\text{rk } F(X) \leq \text{rk } F(Y)$

$$X_1 = X_2 = Y_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad Y_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

If ζ_{ij}, ξ_{ij} denote the coordinates of $M_4(\mathbb{C}) \times M_4(\mathbb{C})$, then

$$p = \zeta_{43}\xi_{21} - \zeta_{41}\xi_{23} - \zeta_{23}\xi_{41} + \zeta_{21}\xi_{43}$$

satisfies $p(PYP^{-1}) = 0$ for all $P \in \text{GL}_4(\mathbb{C})$, and $p(X) = 2$

There is $P_\varepsilon \in \text{GL}_5(\mathbb{C})$ such that $X \oplus 0 = \lim_{\varepsilon \rightarrow 0} P_\varepsilon(Y \oplus 0)P_\varepsilon^{-1}$.

$$\text{rk } F(X) = \text{rk } F(X \oplus 0) - \text{rk } F(0) \leq \text{rk } F(Y \oplus 0) - \text{rk } F(0) = \text{rk } F(Y)$$

Moral & Final thoughts

- ▶ no multivariate JCF
- ▶ closed orbits have good geometry
- ▶ ranks of pencils separate orbits

Conjecture

TFAE for $X, Y \in M_n(\mathbb{C})^m$:

- (a) $X \oplus 0_k \in \overline{(Y \oplus 0_k)^{GL_{n+k}}}$ for some $k \in \mathbb{N}$;
- (b) $\text{rk } F(X) \leq \text{rk } F(Y)$ for all affine pencils F .

Problem

Certify $X \in \not\subseteq \overline{Y^{GL}}$ with invariants in a natural way?