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Moduli spaces and holomorphic maps

Constructions in algebraic geometry can often give rise to surprising maps
between moduli spaces.

Over C, these maps are usually holomorphic.

e Can we describe all holomorphic maps between given moduli spaces?

* Are they all given by some previously known algebraic construction?
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Resolving the quartic

Ferrari in 1545 solves the quartic equation by constructing a cubic
polynomial from a given quartic.

The following holomorphic map describes what happens to the roots.

R: UCont,C — UCont;C

{xl, cees X4} > {XI.X4 + Xy X3y X1X3 + Xy Xgs X1X9 + XBX4}
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Moduli spaces @

A genus g Riemann surface is a complex 1-manifold.

homeomorphic to a genus g surface.

We can equip it with a sequence of marked points.

The moduli space of genus g Riemann surfaces equipped with an ordered list
of n marked points (up to isomorphism) is 4, .

We write A, , / 5, for the unordered variant, and also /4, = M ,
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Constructing elliptic curves

Let x;, x5, x3 € C be distinct.

The equation V2 = (x — x1)(x — x,)(x — x3) defines an elliptic curve.

This defines a holomorphic map UCont;C — ./ ;.
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Covering construction

Let X be a Riemann surface of genus g. Consider the cover of X

corresponding to the kernel of the natural map =(X) = H(X; Z/227).

By pulling back the Riemann surface structure of X we obtain a new

Riemann surface Y of genus h = 2%8(g — 1) + 1.

This defines a holomorphic map /#, — M, where h = 2%8(g — 1)+ 1.
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Examples so far

Resolving the quartic: UCont,C — UCont;C.
Elliptic curves: UConf;C — /|
Covering construction: M, = Mye,_1y41-

Many constructions coming from other famous stories, e.g. the 27 lines on a
smooth cubic surface, the Jacobian of a Riemann surface, ...
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Sample questions

What are the holomorphic maps UCont,C — UCont, C?

What are the holomorphic maps UCont,C — #, 2

What are the holomorphic maps 4, ,, — M4, ,,?

And many more.

Each of the above are open in general, but have been solved in ranges.
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Theorem (Chen—Salter, ‘23)

Letn >26and g <n— 2.

n—1
2

associates to {xy, ..., X, } the hyperelliptic Riemann surface defined by

If f: UCont,C — ., is non-constant holomorphic, then g = [ J and f

y2 = (X —Xxp)(x —x).
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Theorem (De Pool—Souto, ‘24)

Letg24,h§3-2g_3, and n,m > 0.

f 4«,, - My, is a non-constant holomorphic map, then g = h, m < n,

and f is given by forgetting some marked points.
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Theorem (H—Schillewaert, ‘23)

Letn > m > 2, and let Aft = C X C* denote the affine group.

If f: UCont,C — UCont, C is holomorphic then, after post-composing with
the quotient map UCont, C — (UCont, C)/Aft, it is either constant or

(n,m) = (4,3) and it agrees with Ferrari’s construction.
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The fundamental group

The following two questions are often related:

What are the holomorphic maps # — N7

What are the homomorphisms 7 (M) — =;(/N)?



Braid groups

The fundamental group z;(UConf,C) is the braid group B, = {6y, ...,0,_;).
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Mapping class groups

Let Zg , be an orientable surface of genus g,

with n punctures and b boundary components.

The mapping class group MOd(Zg,n) s
Mod(Zgan) = Jzo({ e Homeo+(2§,n) Sl = idaz}).

Write Modlg , = Mod(Zg ). If n or b are zero we omit them.

We have 7,(/, ,/S,) = Mod, ..
Special case: Mod, ; = SL,Z.

b
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Braid group as mapping class group

The braid group is also a mapping class group.

The natural map B, — Mod(l) ~ 1s an isomorphism. K_/—\,

0.n
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Dehn twists

Let y be a curve in an orientable surface 2. The Dehn twist I, e Mod(2) about y is

defined as ftollows.

Take an annular neighborhood of y, viewed as the cylinder § L% [0,1].

Then 7, acts by (€, 1)

elsewhere.

— (9™ 1) on the annulus, and the identity

e
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Multitwists

If we choose a collection y, ..., 7, of disjoint curves on an orientable surface 2, then
the Dehn twists 7, , ..., T, all commute in Mod(2).

We call an element of the subgroup (7, , ..., T, ) = Z" a multitwist.



Thank you!



