

An introduction to holomorphic rigidity

Peter Huxford, Rice University

Moduli spaces and holomorphic maps

Constructions in algebraic geometry can often give rise to surprising maps between moduli spaces.

Moduli spaces and holomorphic maps

Constructions in algebraic geometry can often give rise to surprising maps between moduli spaces.

Over \mathbb{C} , these maps are usually holomorphic.

Moduli spaces and holomorphic maps

Constructions in algebraic geometry can often give rise to surprising maps between moduli spaces.

Over \mathbb{C} , these maps are usually holomorphic.

- Can we describe all holomorphic maps between given moduli spaces?

Moduli spaces and holomorphic maps

Constructions in algebraic geometry can often give rise to surprising maps between moduli spaces.

Over \mathbb{C} , these maps are usually holomorphic.

- Can we describe all holomorphic maps between given moduli spaces?
- Are they all given by some previously known algebraic construction?

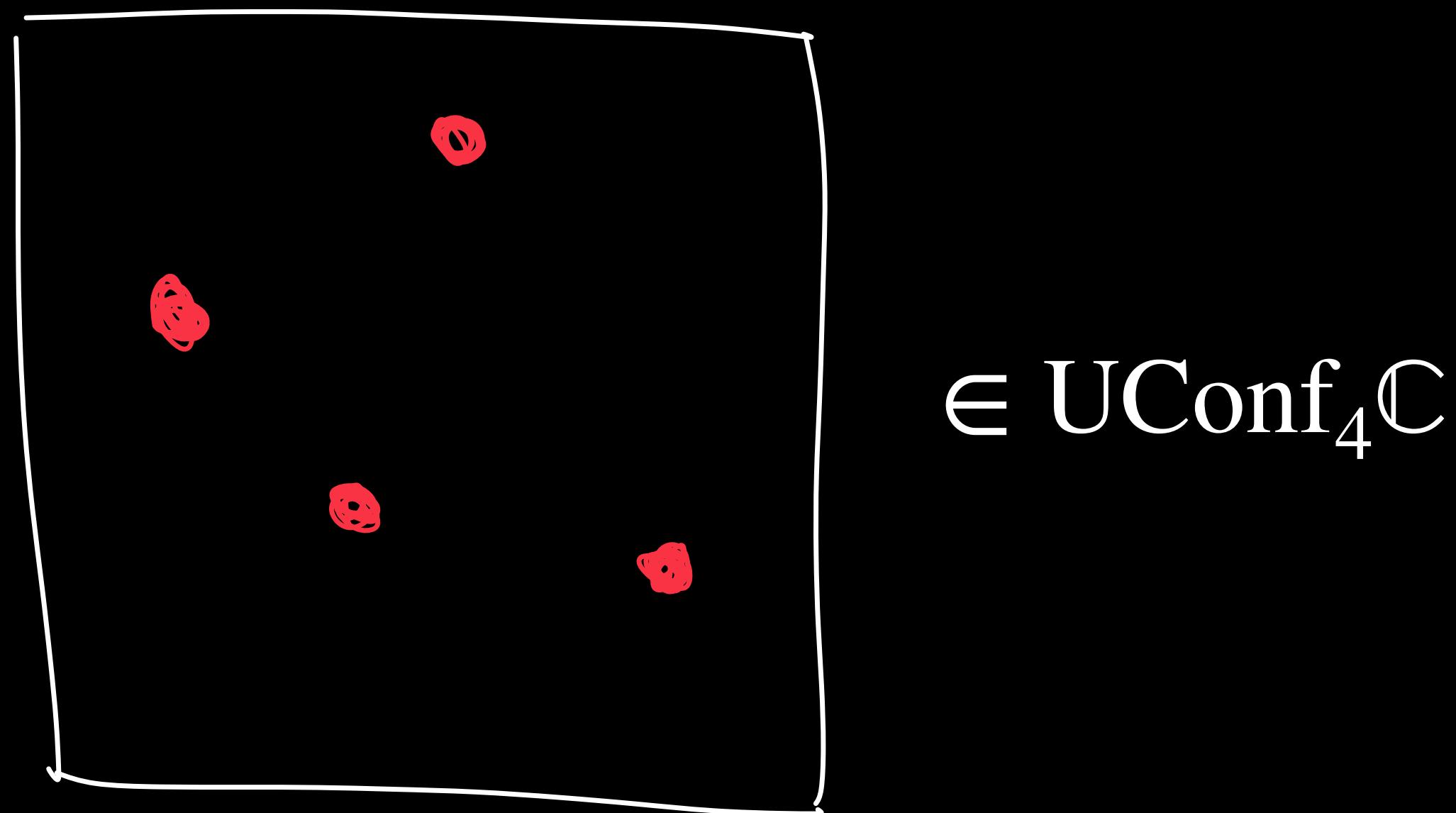
Configuration spaces

$$\begin{aligned}\text{UConf}_n X &= \left(\{ (x_1, \dots, x_n) \in X^n : x_i \neq x_j \text{ if } i \neq j \} \right) / S_n \\ &= \{ \text{The space of unordered sets } \{x_1, \dots, x_n\} \text{ of } n \text{ distinct points in } X \}.\end{aligned}$$

Configuration spaces

$$\text{UConf}_n X = \left(\{ (x_1, \dots, x_n) \in X^n : x_i \neq x_j \text{ if } i \neq j \} \right) / S_n$$

= {The space of unordered sets $\{x_1, \dots, x_n\}$ of n distinct points in X }.



Resolving the quartic

Ferrari in 1545 solves the quartic equation by constructing a cubic polynomial from a given quartic.

Resolving the quartic

Ferrari in 1545 solves the quartic equation by constructing a cubic polynomial from a given quartic.

The following holomorphic map describes what happens to the roots.

Resolving the quartic

Ferrari in 1545 solves the quartic equation by constructing a cubic polynomial from a given quartic.

The following holomorphic map describes what happens to the roots.

$$R: \mathrm{UConf}_4\mathbb{C} \rightarrow \mathrm{UConf}_3\mathbb{C}$$

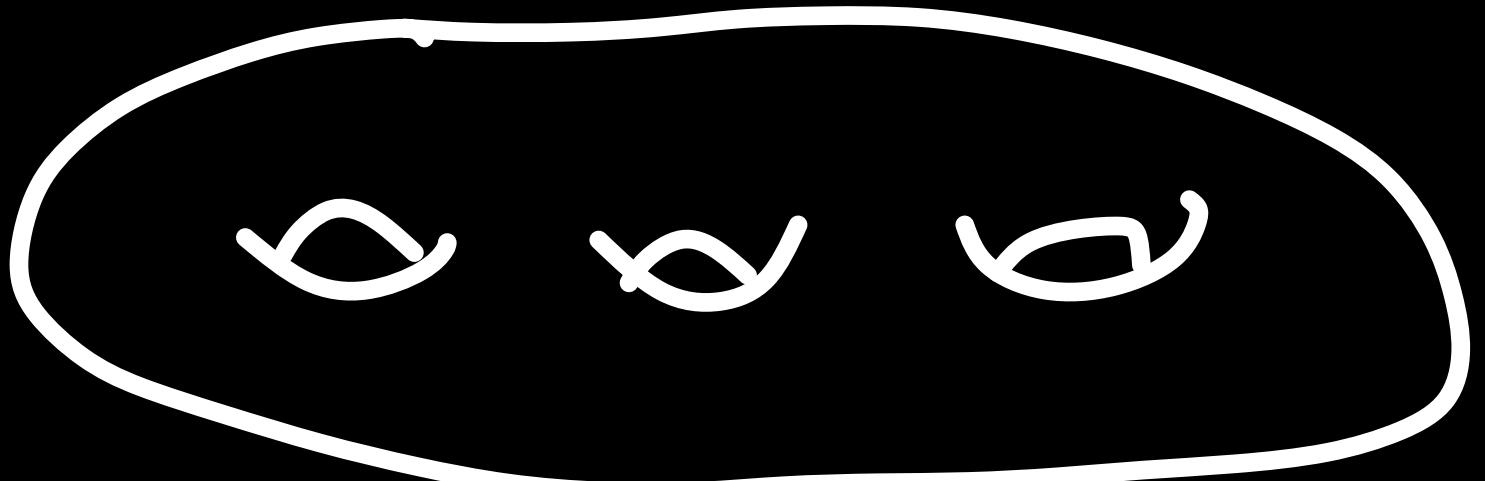
$$\{x_1, \dots, x_4\} \mapsto \{x_1x_4 + x_2x_3, x_1x_3 + x_2x_4, x_1x_2 + x_3x_4\}$$

Moduli spaces

A *genus g Riemann surface* is a complex 1-manifold.
homeomorphic to a genus g surface.

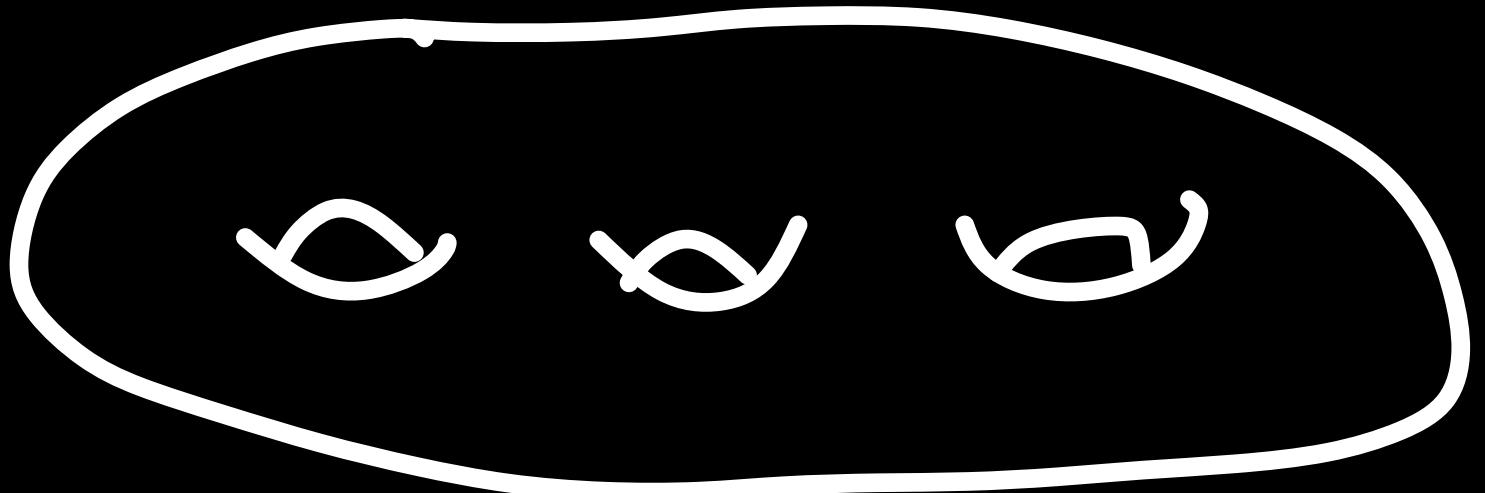
Moduli spaces

A *genus g Riemann surface* is a complex 1-manifold.
homeomorphic to a genus g surface.



Moduli spaces

A *genus g Riemann surface* is a complex 1-manifold.
homeomorphic to a genus g surface.

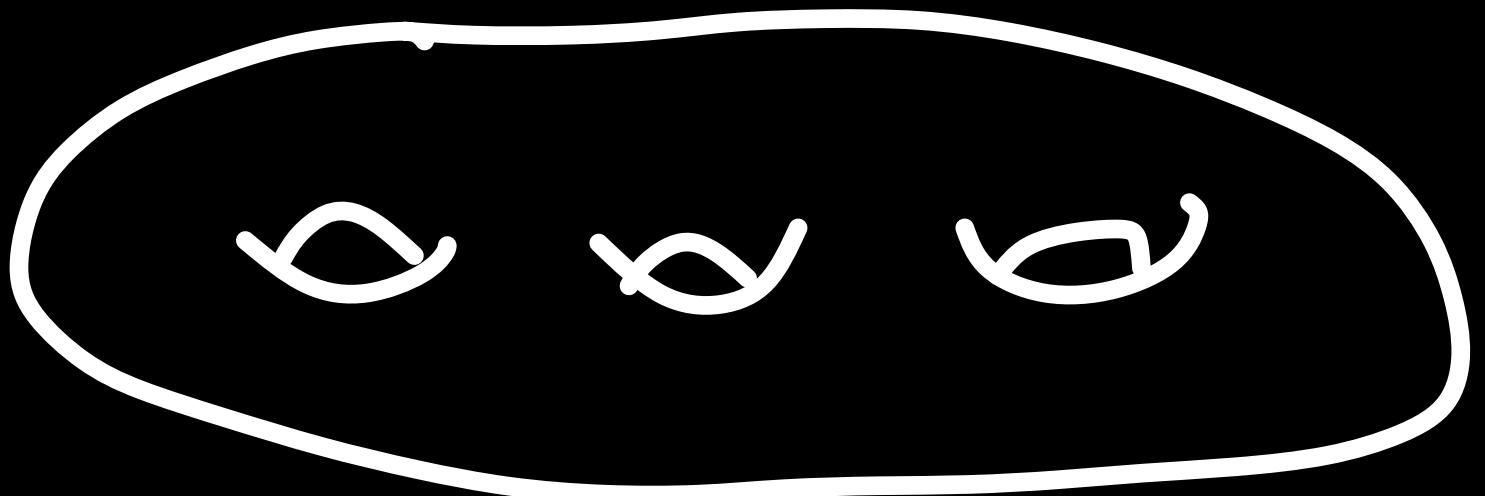


genus 3

Moduli spaces

A *genus g Riemann surface* is a complex 1-manifold.
homeomorphic to a genus g surface.

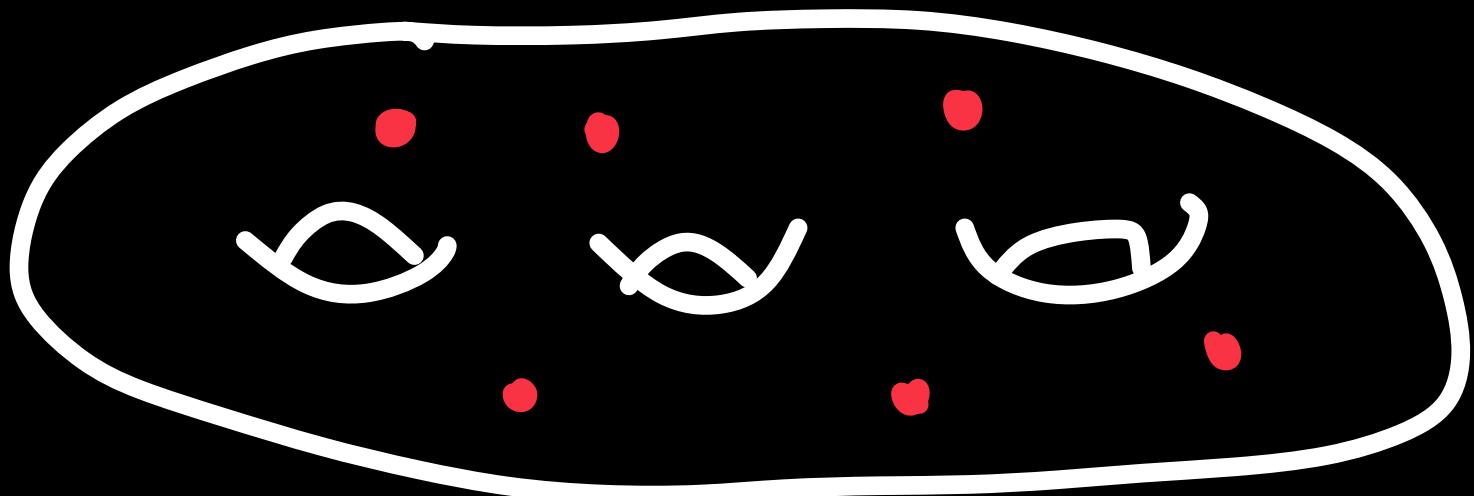
We can equip it with a sequence of marked points.



Moduli spaces

A *genus g Riemann surface* is a complex 1-manifold.
homeomorphic to a genus g surface.

We can equip it with a sequence of marked points.

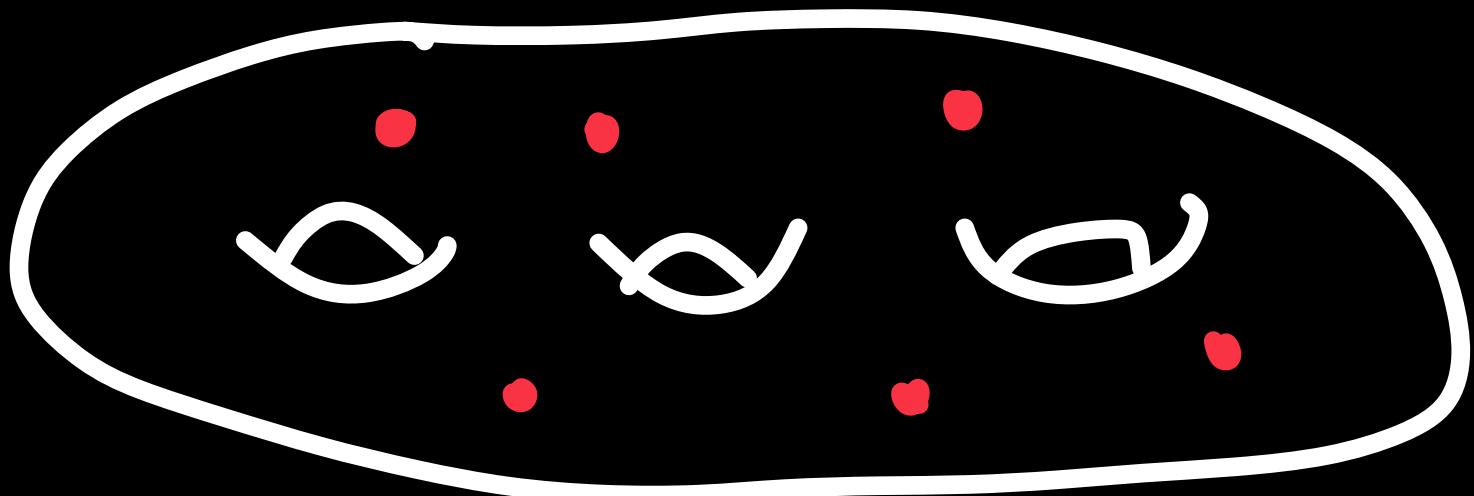


genus 3

Moduli spaces

A *genus g Riemann surface* is a complex 1-manifold. homeomorphic to a genus g surface.

We can equip it with a sequence of marked points.

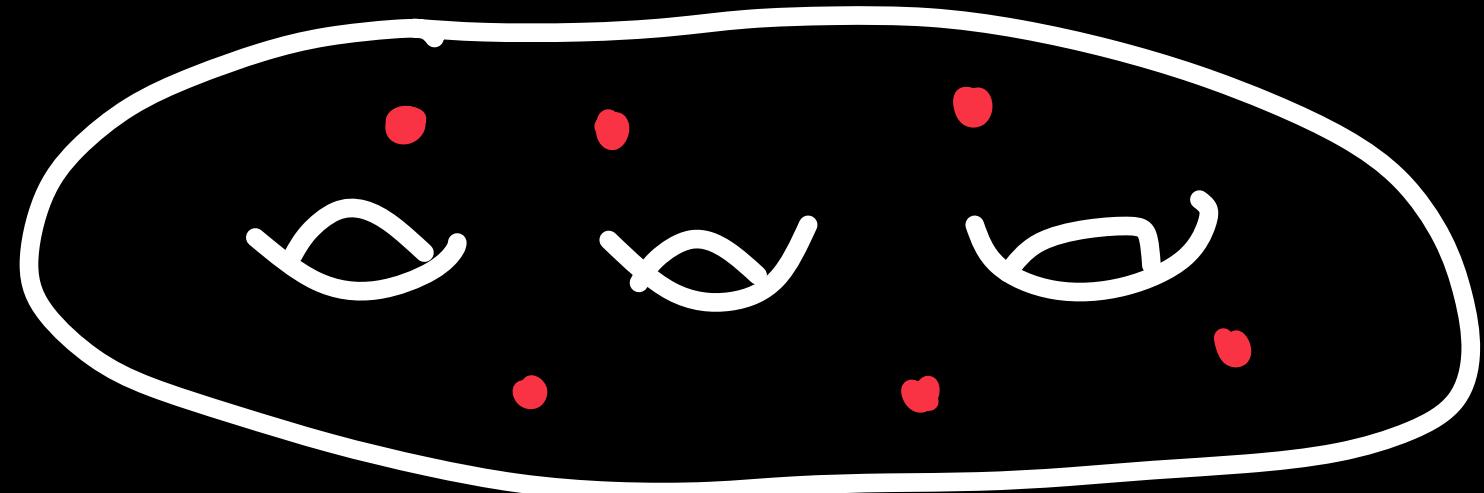


genus 3
6 marked points

Moduli spaces

A *genus g Riemann surface* is a complex 1-manifold. homeomorphic to a genus g surface.

We can equip it with a sequence of marked points.



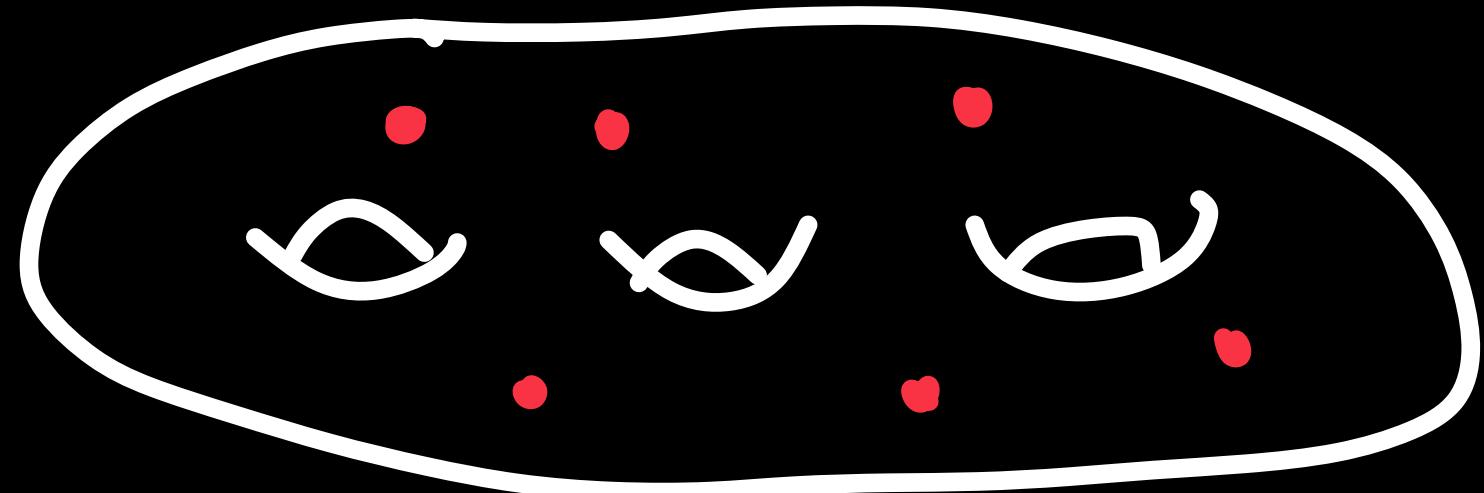
genus 3
6 marked points

The *moduli space* of genus g Riemann surfaces equipped with an ordered list of n marked points (up to isomorphism) is $\mathcal{M}_{g,n}$.

Moduli spaces

A *genus g Riemann surface* is a complex 1-manifold. homeomorphic to a genus g surface.

We can equip it with a sequence of marked points.



genus 3
6 marked points

The *moduli space* of genus g Riemann surfaces equipped with an ordered list of n marked points (up to isomorphism) is $\mathcal{M}_{g,n}$.

We write $\mathcal{M}_{g,n} / S_n$ for the unordered variant, and also $\mathcal{M}_g = \mathcal{M}_{g,0}$.

Moduli space of elliptic curves

An *elliptic curve* over \mathbb{C} is a genus 1 Riemann surface with 1 marked point.

Moduli space of elliptic curves

An *elliptic curve* over \mathbb{C} is a genus 1 Riemann surface with 1 marked point.

Every elliptic curve is isomorphic to $E_\tau := \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$ for some $\tau \in \mathbb{H}$.

Moduli space of elliptic curves

An *elliptic curve* over \mathbb{C} is a genus 1 Riemann surface with 1 marked point.

Every elliptic curve is isomorphic to $E_\tau := \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$ for some $\tau \in \mathbb{H}$.

The group $\text{SL}_2\mathbb{Z}$ acts on \mathbb{H} via $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \tau = \frac{a\tau + b}{c\tau + d}$.

Moduli space of elliptic curves

An *elliptic curve* over \mathbb{C} is a genus 1 Riemann surface with 1 marked point.

Every elliptic curve is isomorphic to $E_\tau := \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$ for some $\tau \in \mathbb{H}$.

The group $\mathrm{SL}_2\mathbb{Z}$ acts on \mathbb{H} via $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \tau = \frac{a\tau + b}{c\tau + d}$.

The elliptic curve E_τ only depends on the $(\mathrm{SL}_2\mathbb{Z})$ -orbit of τ .

Moduli space of elliptic curves

An *elliptic curve* over \mathbb{C} is a genus 1 Riemann surface with 1 marked point.

Every elliptic curve is isomorphic to $E_\tau := \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$ for some $\tau \in \mathbb{H}$.

The group $\text{SL}_2\mathbb{Z}$ acts on \mathbb{H} via $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \tau = \frac{a\tau + b}{c\tau + d}$.

The elliptic curve E_τ only depends on the $(\text{SL}_2\mathbb{Z})$ -orbit of τ .

We have $\mathcal{M}_{1,1} \cong \mathbb{H} / \text{SL}_2\mathbb{Z}$

Moduli space of elliptic curves

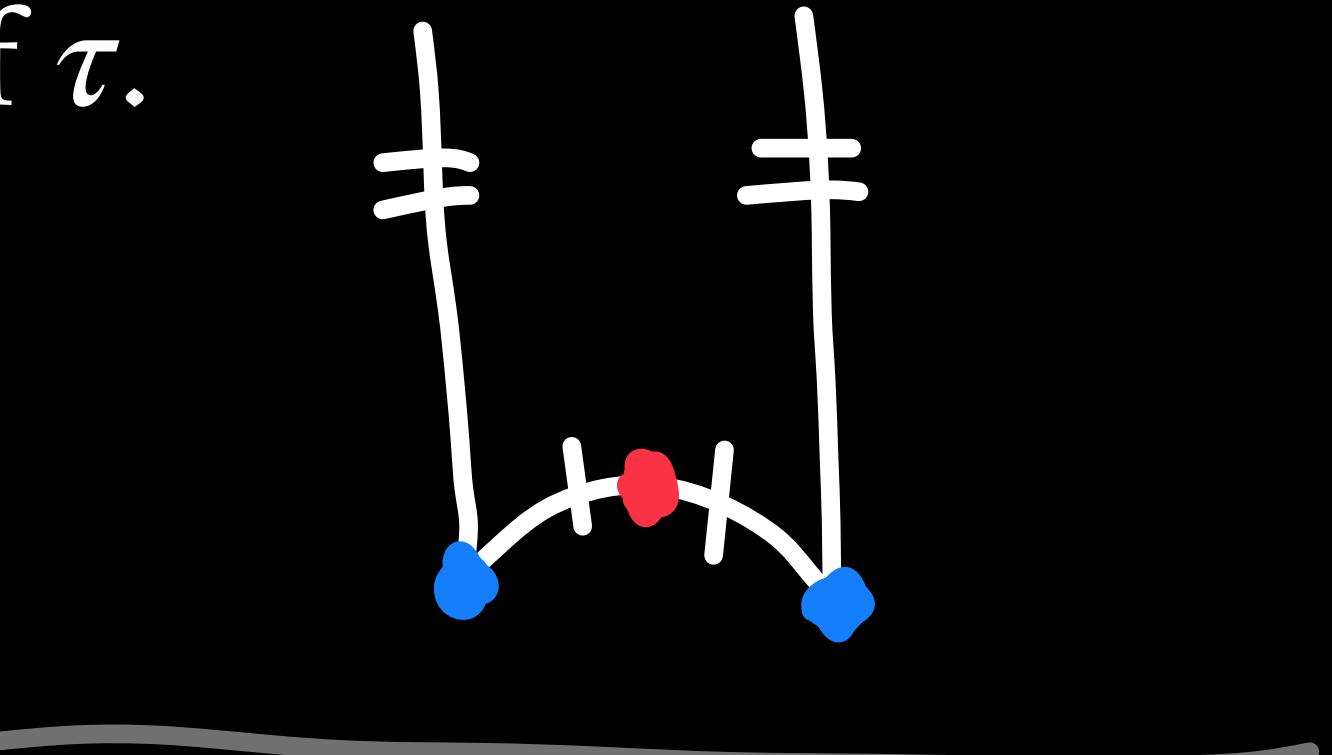
An *elliptic curve* over \mathbb{C} is a genus 1 Riemann surface with 1 marked point.

Every elliptic curve is isomorphic to $E_\tau := \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$ for some $\tau \in \mathbb{H}$.

The group $\text{SL}_2\mathbb{Z}$ acts on \mathbb{H} via $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \tau = \frac{a\tau + b}{c\tau + d}$.

The elliptic curve E_τ only depends on the $(\text{SL}_2\mathbb{Z})$ -orbit of τ .

We have $\mathcal{M}_{1,1} \cong \mathbb{H} / \text{SL}_2\mathbb{Z}$



Constructing elliptic curves

Let $x_1, x_2, x_3 \in \mathbb{C}$ be distinct.

Constructing elliptic curves

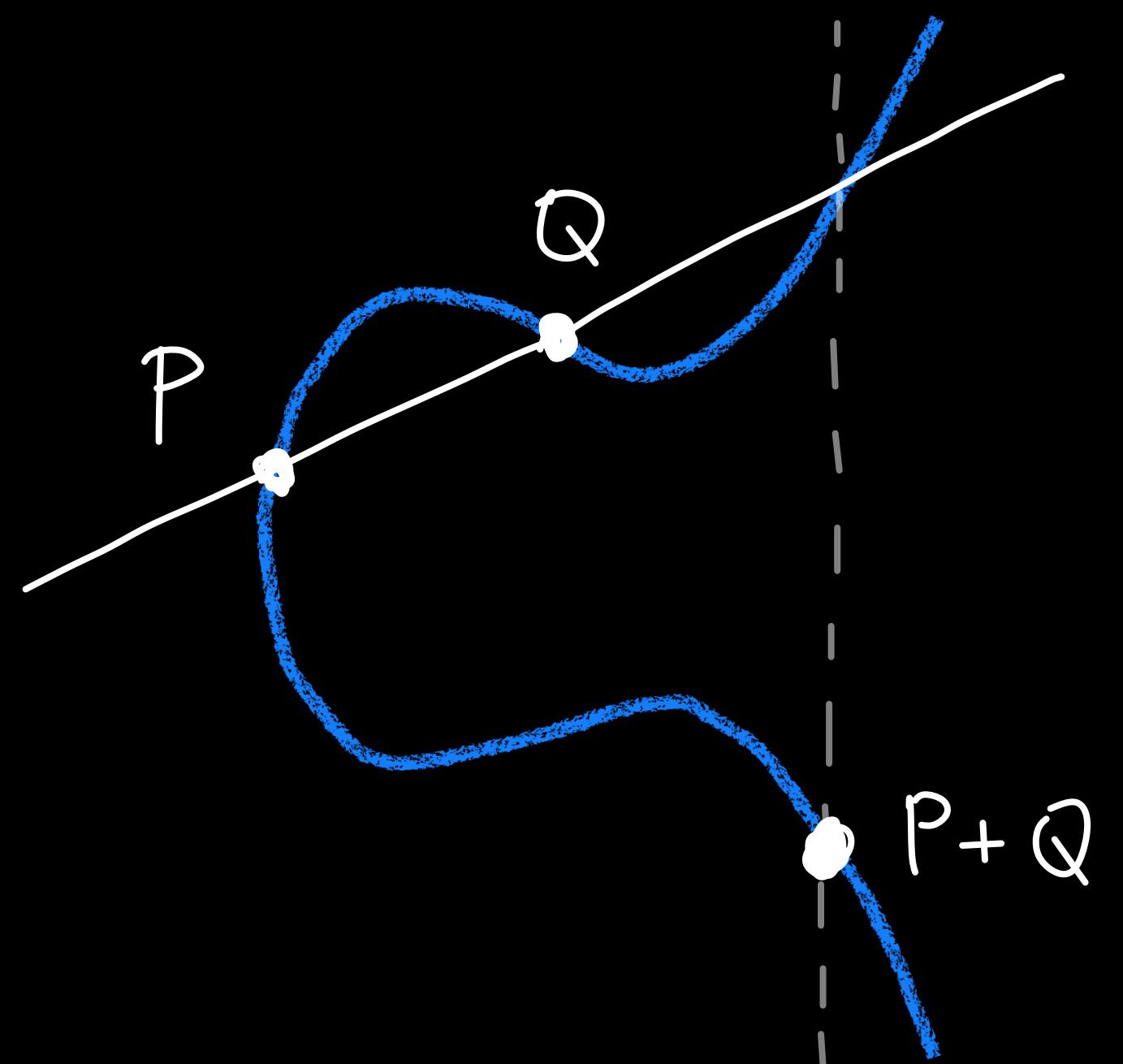
Let $x_1, x_2, x_3 \in \mathbb{C}$ be distinct.

The equation $y^2 = (x - x_1)(x - x_2)(x - x_3)$ defines an elliptic curve.

Constructing elliptic curves

Let $x_1, x_2, x_3 \in \mathbb{C}$ be distinct.

The equation $y^2 = (x - x_1)(x - x_2)(x - x_3)$ defines an elliptic curve.

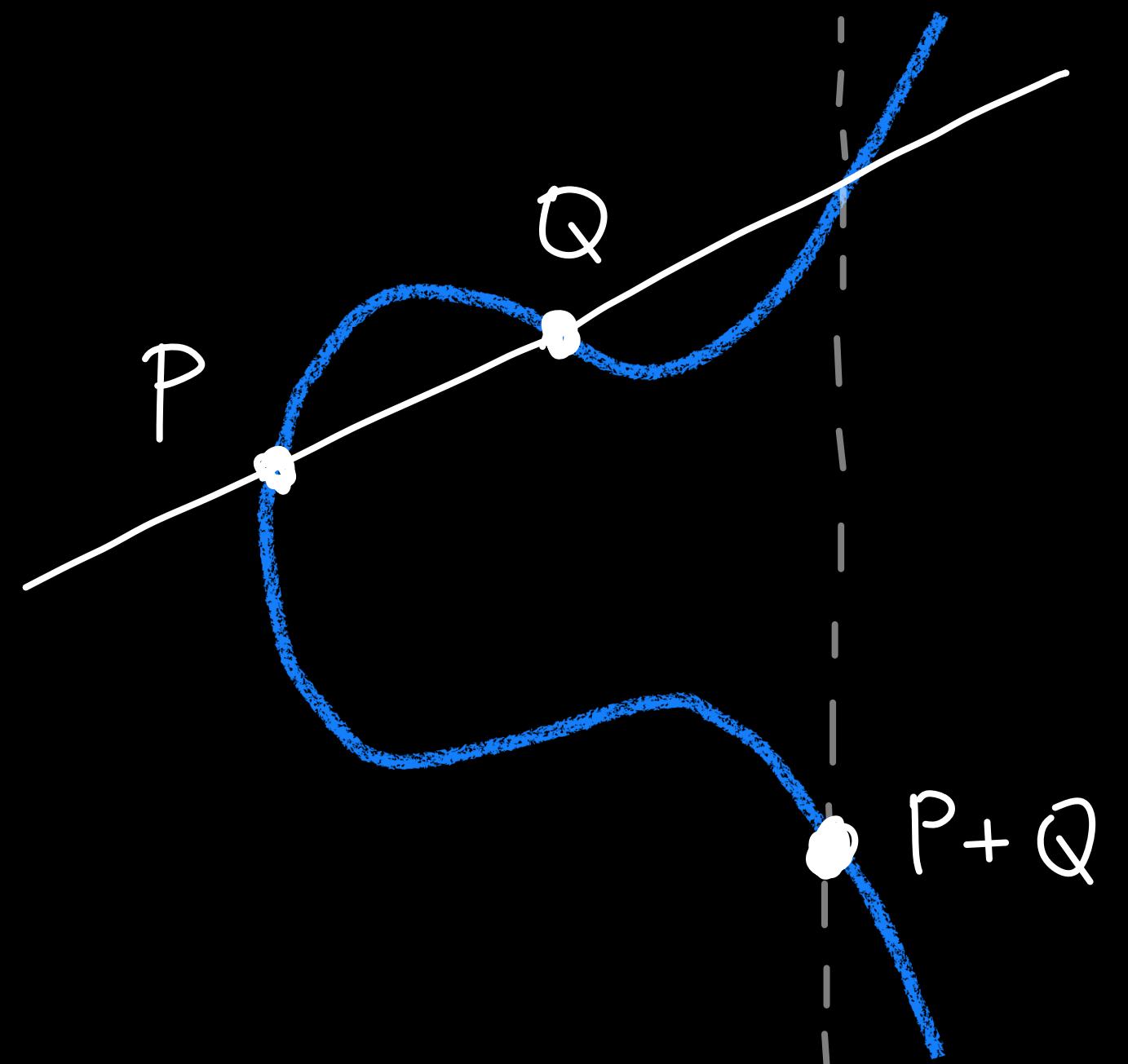


Constructing elliptic curves

Let $x_1, x_2, x_3 \in \mathbb{C}$ be distinct.

The equation $y^2 = (x - x_1)(x - x_2)(x - x_3)$ defines an elliptic curve.

This defines a holomorphic map $\text{UConf}_3\mathbb{C} \rightarrow \mathcal{M}_{1,1}$.



Covering construction

Let X be a Riemann surface of genus g .

Covering construction

Let X be a Riemann surface of genus g . Consider the cover of X corresponding to the kernel of the natural map $\pi_1(X) \rightarrow H_1(X; \mathbb{Z}/2\mathbb{Z})$.

Covering construction

Let X be a Riemann surface of genus g . Consider the cover of X corresponding to the kernel of the natural map $\pi_1(X) \rightarrow H_1(X; \mathbb{Z}/2\mathbb{Z})$.

By pulling back the Riemann surface structure of X we obtain a new Riemann surface Y of genus $h = 2^{2g}(g - 1) + 1$.

Covering construction

Let X be a Riemann surface of genus g . Consider the cover of X corresponding to the kernel of the natural map $\pi_1(X) \rightarrow H_1(X; \mathbb{Z}/2\mathbb{Z})$.

By pulling back the Riemann surface structure of X we obtain a new Riemann surface Y of genus $h = 2^{2g}(g - 1) + 1$.

This defines a holomorphic map $\mathcal{M}_g \rightarrow \mathcal{M}_h$ where $h = 2^{2g}(g - 1) + 1$.

Examples so far

Resolving the quartic: $\text{UConf}_4\mathbb{C} \rightarrow \text{UConf}_3\mathbb{C}$.

Elliptic curves: $\text{UConf}_3\mathbb{C} \rightarrow \mathcal{M}_{1,1}$

Covering construction: $\mathcal{M}_g \rightarrow \mathcal{M}_{2^{2g}(g-1)+1}$.

Examples so far

Resolving the quartic: $\mathrm{UConf}_4\mathbb{C} \rightarrow \mathrm{UConf}_3\mathbb{C}$.

Elliptic curves: $\mathrm{UConf}_3\mathbb{C} \rightarrow \mathcal{M}_{1,1}$

Covering construction: $\mathcal{M}_g \rightarrow \mathcal{M}_{2^{2g}(g-1)+1}$.

Many constructions coming from other famous stories, e.g. the 27 lines on a smooth cubic surface, the Jacobian of a Riemann surface, ...

Sample questions

What are the holomorphic maps $\mathrm{UConf}_n\mathbb{C} \rightarrow \mathrm{UConf}_m\mathbb{C}$?

Sample questions

What are the holomorphic maps $\mathrm{UConf}_n\mathbb{C} \rightarrow \mathrm{UConf}_m\mathbb{C}$?

What are the holomorphic maps $\mathrm{UConf}_n\mathbb{C} \rightarrow \mathcal{M}_{g,m}$?

Sample questions

What are the holomorphic maps $\mathrm{UConf}_n\mathbb{C} \rightarrow \mathrm{UConf}_m\mathbb{C}$?

What are the holomorphic maps $\mathrm{UConf}_n\mathbb{C} \rightarrow \mathcal{M}_{g,m}$?

What are the holomorphic maps $\mathcal{M}_{g,n} \rightarrow \mathcal{M}_{h,m}$?

Sample questions

What are the holomorphic maps $\mathrm{UConf}_n\mathbb{C} \rightarrow \mathrm{UConf}_m\mathbb{C}$?

What are the holomorphic maps $\mathrm{UConf}_n\mathbb{C} \rightarrow \mathcal{M}_{g,m}$?

What are the holomorphic maps $\mathcal{M}_{g,n} \rightarrow \mathcal{M}_{h,m}$?

And many more.

Sample questions

What are the holomorphic maps $\mathrm{UConf}_n \mathbb{C} \rightarrow \mathrm{UConf}_m \mathbb{C}$?

What are the holomorphic maps $\mathrm{UConf}_n \mathbb{C} \rightarrow \mathcal{M}_{g,m}$?

What are the holomorphic maps $\mathcal{M}_{g,n} \rightarrow \mathcal{M}_{h,m}$?

And many more.

Each of the above are open in general, but have been solved in ranges.

Theorem (Chen–Salter, '23)

Let $n \geq 26$ and $g \leq n - 2$.

Theorem (Chen–Salter, '23)

Let $n \geq 26$ and $g \leq n - 2$.

If $f: \text{UConf}_n \mathbb{C} \rightarrow \mathcal{M}_g$ is non-constant holomorphic, then $g = \left\lfloor \frac{n-1}{2} \right\rfloor$

Theorem (Chen–Salter, '23)

Let $n \geq 26$ and $g \leq n - 2$.

If $f: \text{UConf}_n \mathbb{C} \rightarrow \mathcal{M}_g$ is non-constant holomorphic, then $g = \left\lfloor \frac{n-1}{2} \right\rfloor$ and f associates to $\{x_1, \dots, x_n\}$ the hyperelliptic Riemann surface defined by

$$y^2 = (x - x_1) \cdots (x - x_n).$$

Theorem (De Pool–Souto, '24)

Let $g \geq 4$, $h \leq 3 \cdot 2^{g-3}$, and $n, m \geq 0$.

Theorem (De Pool–Souto, '24)

Let $g \geq 4$, $h \leq 3 \cdot 2^{g-3}$, and $n, m \geq 0$.

If $f: \mathcal{M}_{g,n} \rightarrow \mathcal{M}_{h,m}$ is a non-constant holomorphic map, then $g = h$, $m \leq n$

Theorem (De Pool–Souto, '24)

Let $g \geq 4$, $h \leq 3 \cdot 2^{g-3}$, and $n, m \geq 0$.

If $f: \mathcal{M}_{g,n} \rightarrow \mathcal{M}_{h,m}$ is a non-constant holomorphic map, then $g = h$, $m \leq n$, and f is given by forgetting some marked points.

Theorem (H–Schillewaert, '23)

Let $n > m \geq 2$, and let $\text{Aff} \cong \mathbb{C} \rtimes \mathbb{C}^*$ denote the affine group.

Theorem (H–Schillewaert, ‘23)

Let $n > m \geq 2$, and let $\text{Aff} \cong \mathbb{C} \rtimes \mathbb{C}^*$ denote the affine group.

If $f: \text{UConf}_n \mathbb{C} \rightarrow \text{UConf}_m \mathbb{C}$ is holomorphic then, after post-composing with the quotient map $\text{UConf}_m \mathbb{C} \rightarrow (\text{UConf}_m \mathbb{C})/\text{Aff}$, it is either constant or $(n, m) = (4, 3)$

Theorem (H–Schillewaert, ‘23)

Let $n > m \geq 2$, and let $\text{Aff} \cong \mathbb{C} \rtimes \mathbb{C}^*$ denote the affine group.

If $f: \text{UConf}_n \mathbb{C} \rightarrow \text{UConf}_m \mathbb{C}$ is holomorphic then, after post-composing with the quotient map $\text{UConf}_m \mathbb{C} \rightarrow (\text{UConf}_m \mathbb{C})/\text{Aff}$, it is either constant or $(n, m) = (4, 3)$ and it agrees with Ferrari’s construction.

The fundamental group

The following two questions are often related:

The fundamental group

The following two questions are often related:

What are the holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$?

The fundamental group

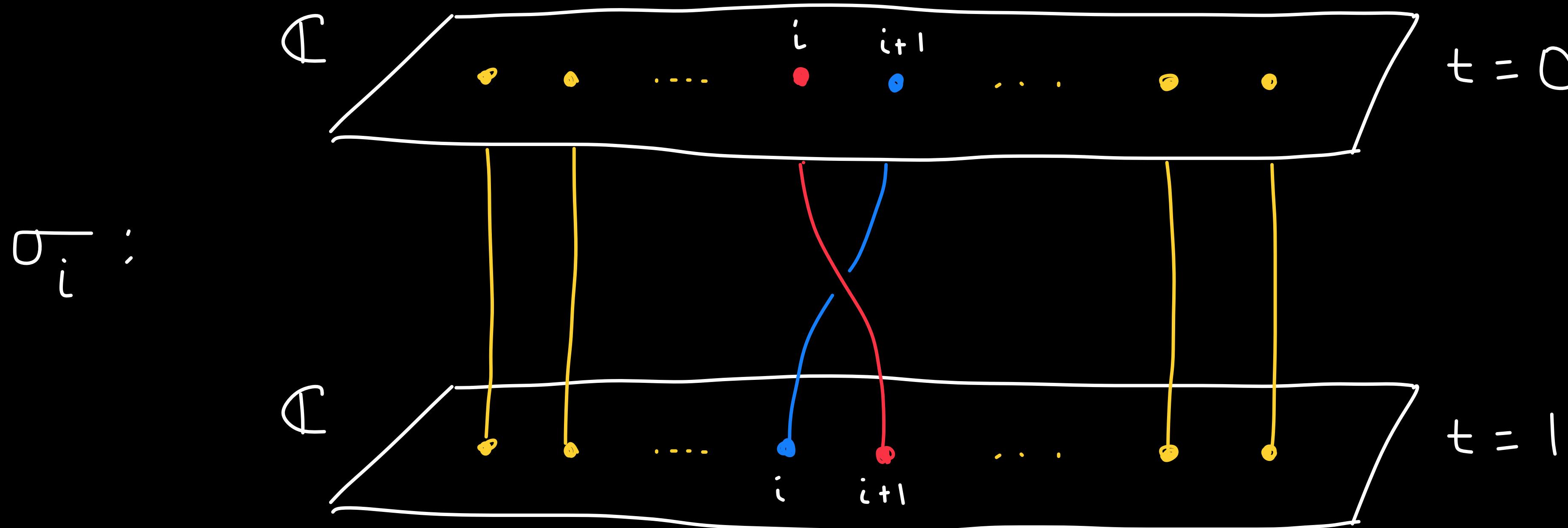
The following two questions are often related:

What are the holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$?

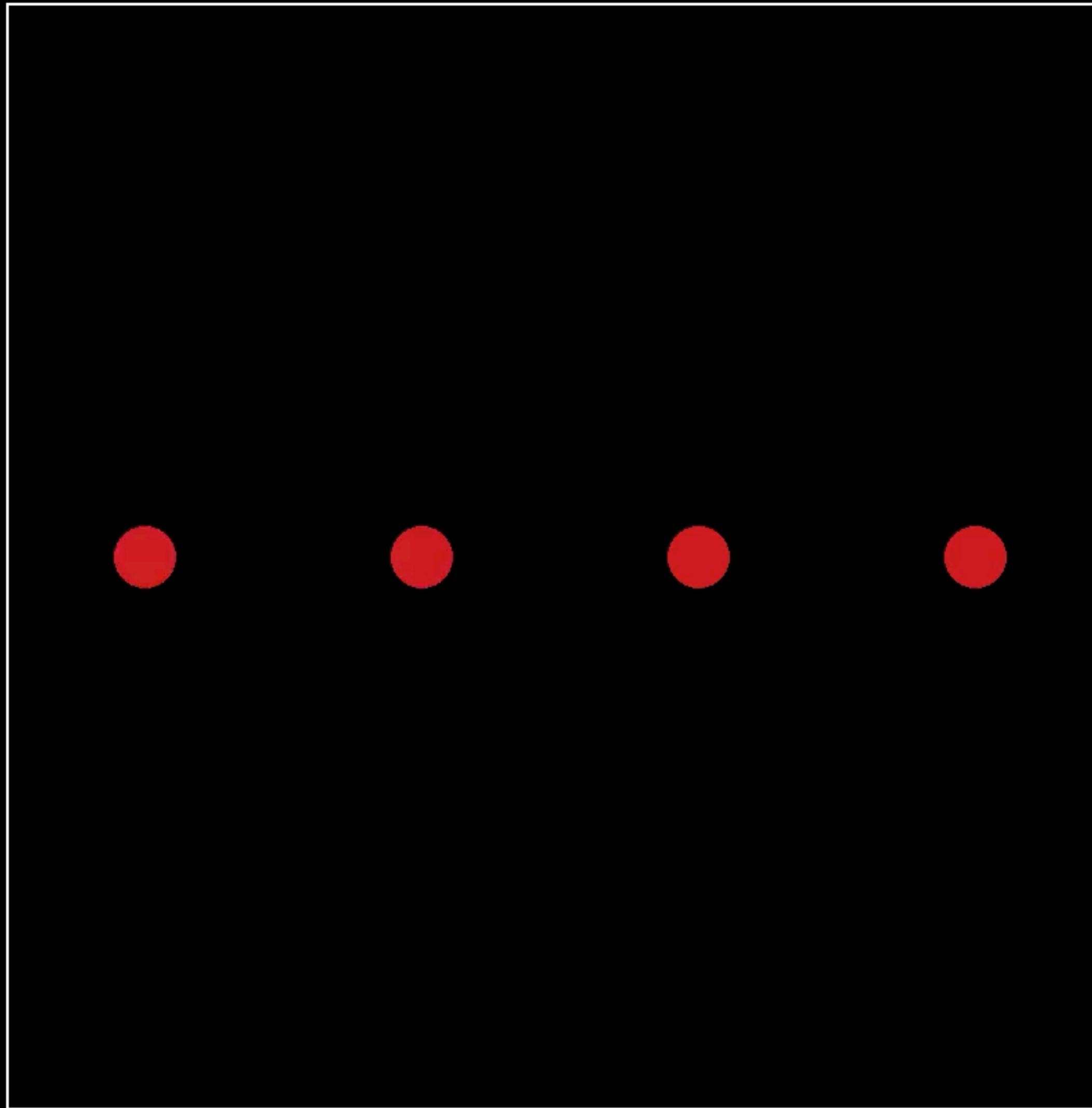
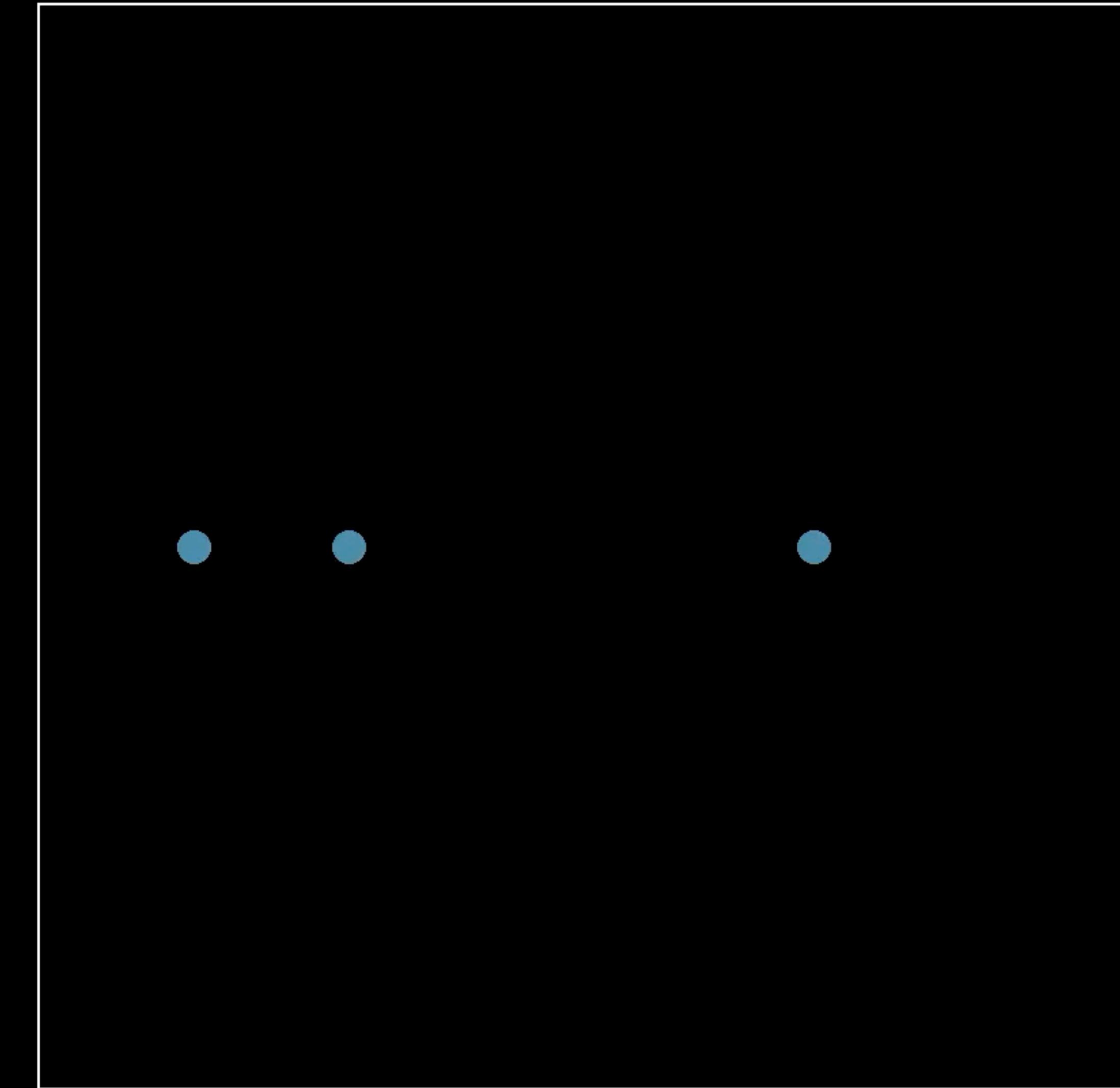
What are the homomorphisms $\pi_1(\mathcal{M}) \rightarrow \pi_1(\mathcal{N})$?

Braid groups

The fundamental group $\pi_1(\text{UConf}_n \mathbb{C})$ is the *braid group* $B_n = \langle \sigma_1, \dots, \sigma_{n-1} \rangle$.

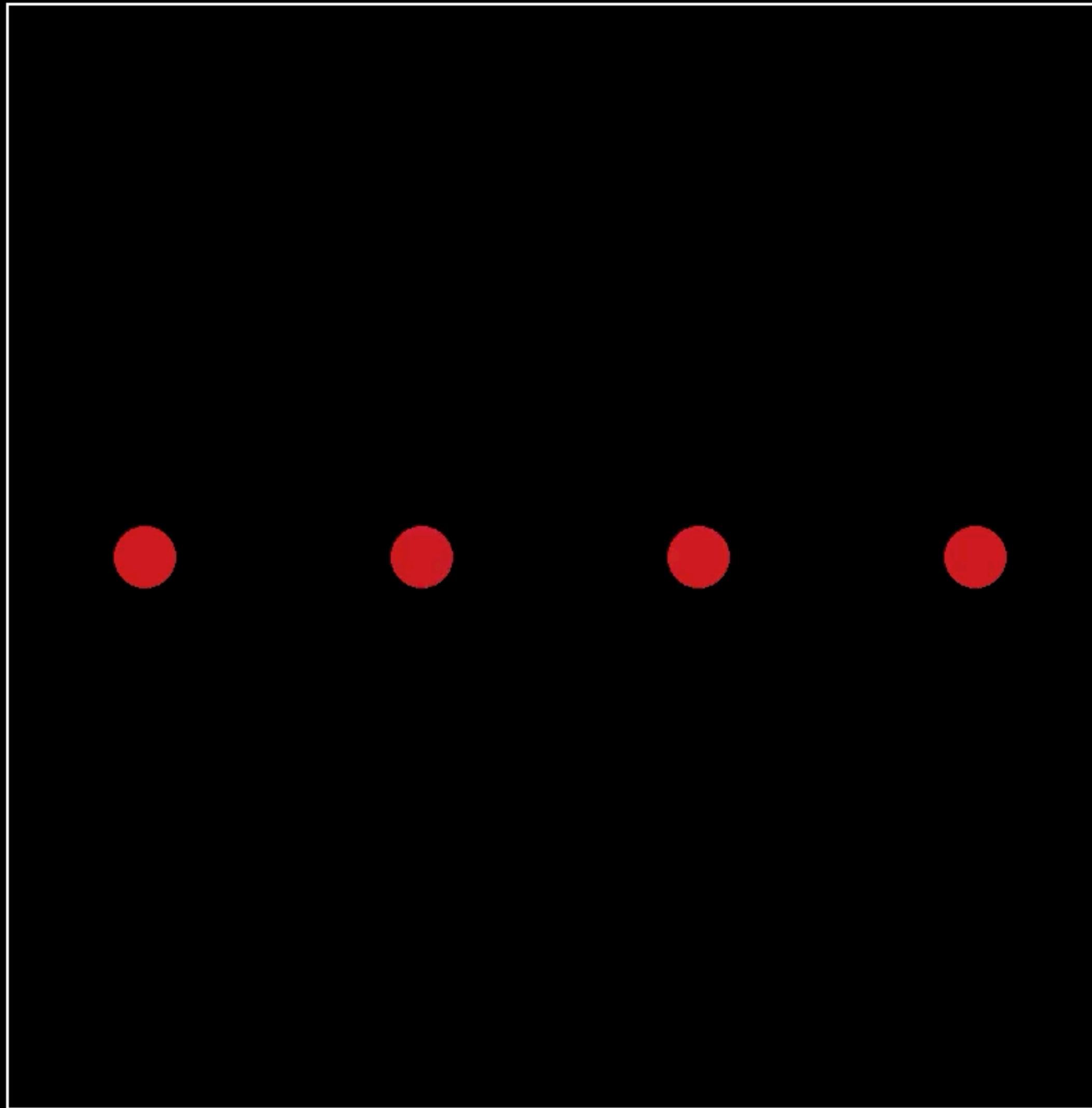
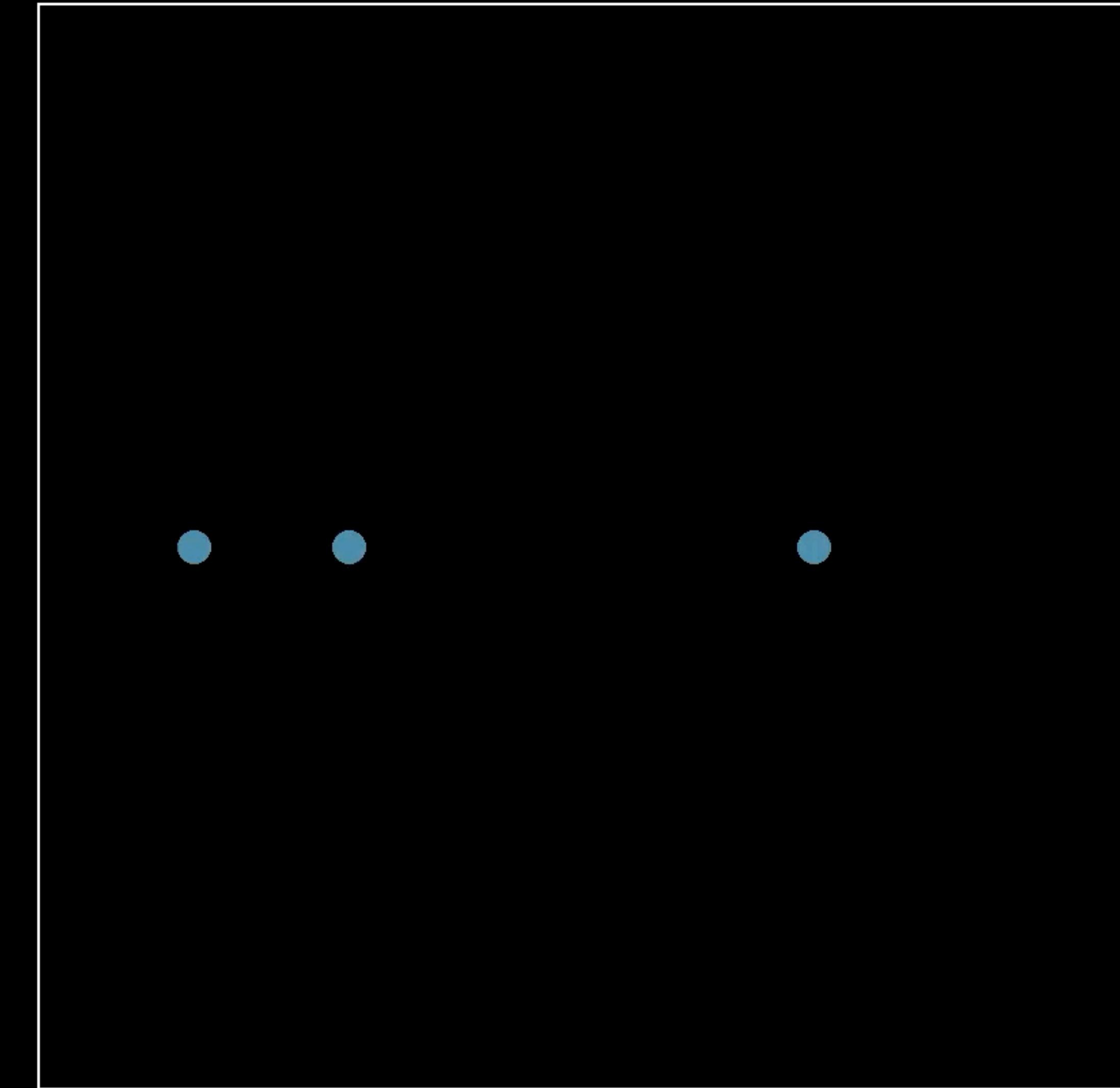


Example: $R: \text{UConf}_4\mathbb{C} \rightarrow \text{UConf}_3\mathbb{C}$ induces $R_*: B_4 \rightarrow B_3$



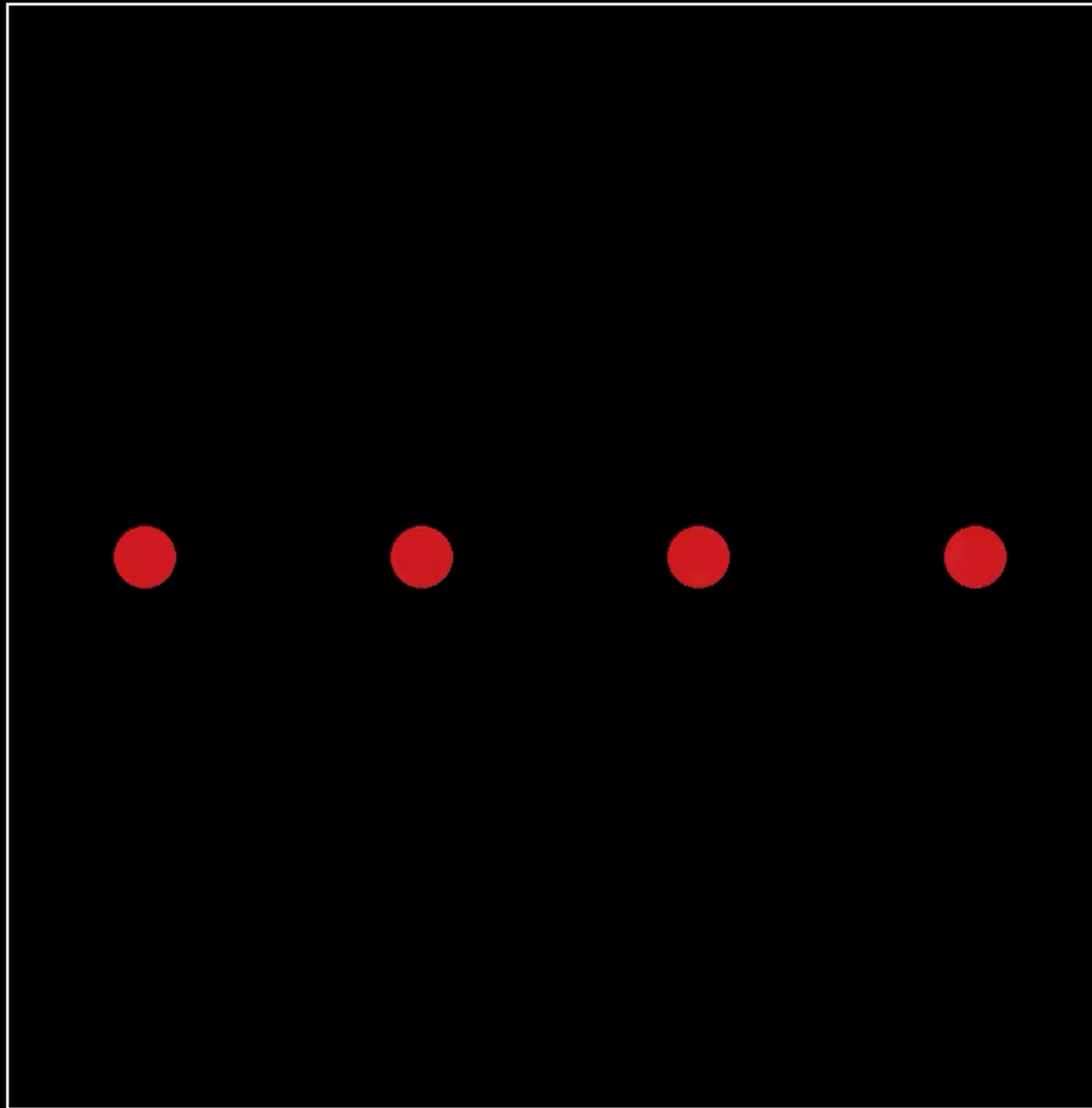
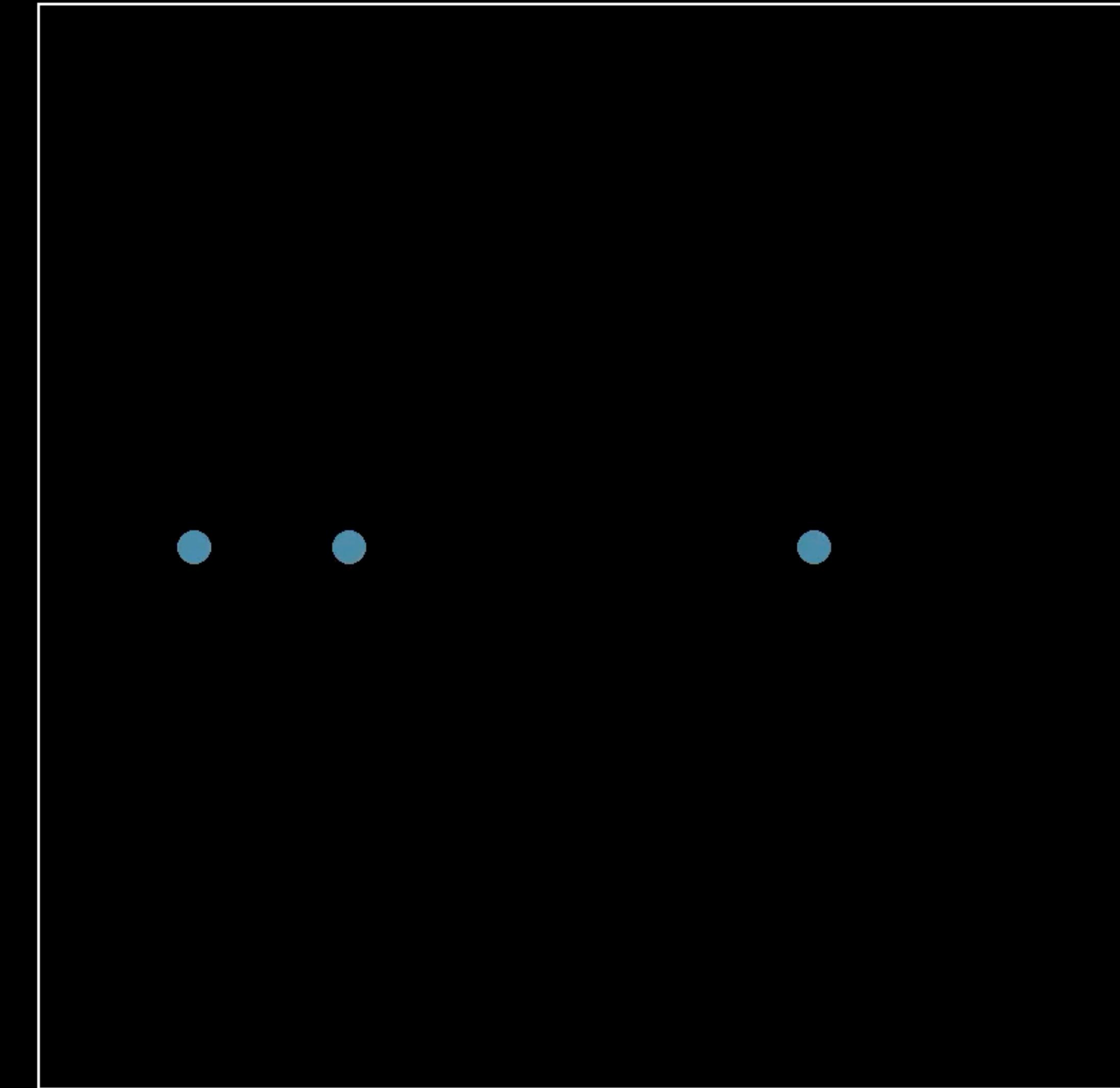
$$R_*(\sigma_1) = \sigma_1$$

Example: $R: \text{UConf}_4\mathbb{C} \rightarrow \text{UConf}_3\mathbb{C}$ induces $R_*: B_4 \rightarrow B_3$



$$R_*(\sigma_2) = \sigma_2$$

Example: $R: \text{UConf}_4\mathbb{C} \rightarrow \text{UConf}_3\mathbb{C}$ induces $R_*: B_4 \rightarrow B_3$



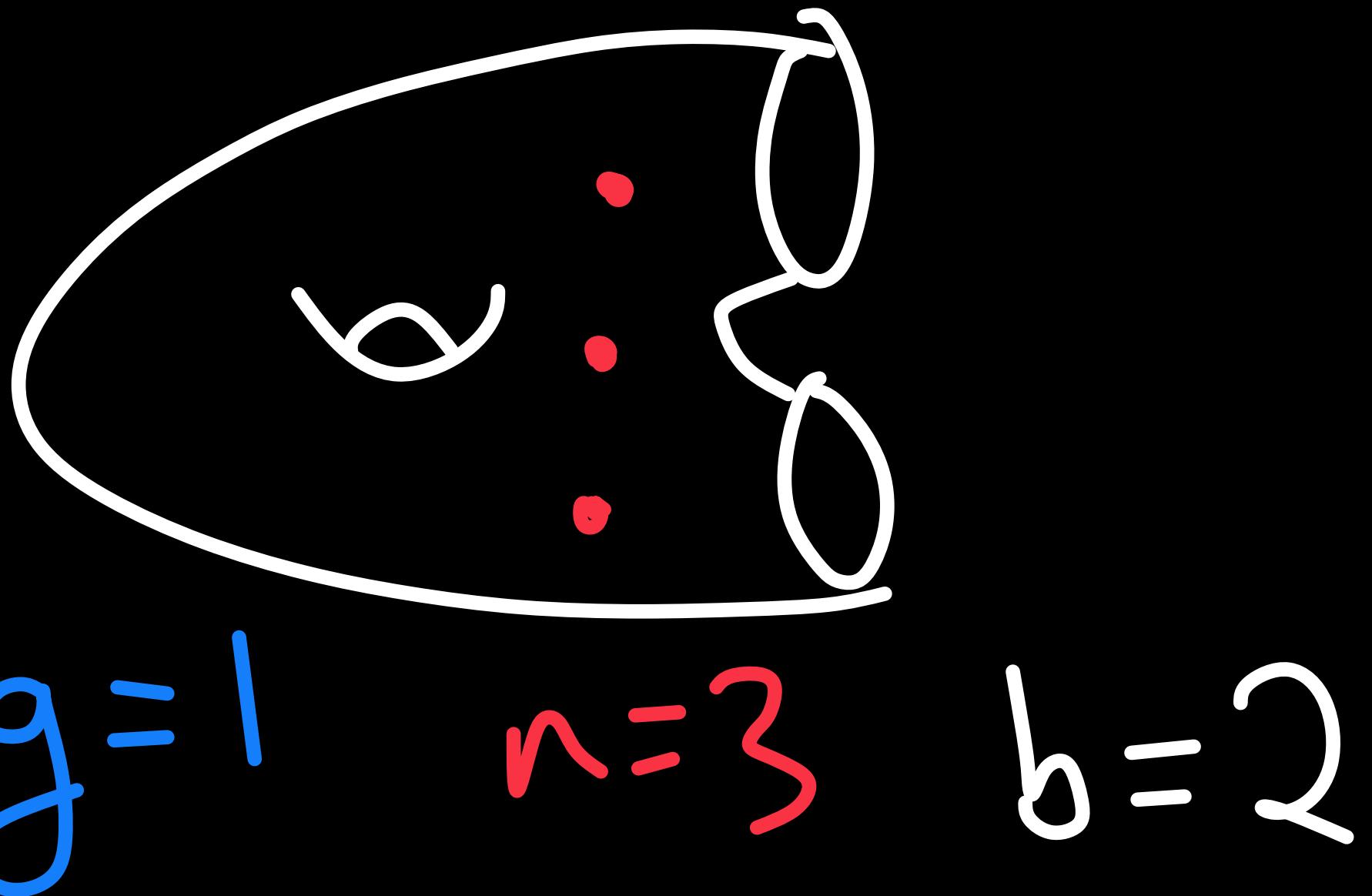
$$R_*(\sigma_3) = \sigma_1$$

Mapping class groups

Let $\Sigma_{g,n}^b$ be an orientable surface of genus g ,
with n punctures and b boundary components.

Mapping class groups

Let $\Sigma_{g,n}^b$ be an orientable surface of genus g ,
with n punctures and b boundary components.

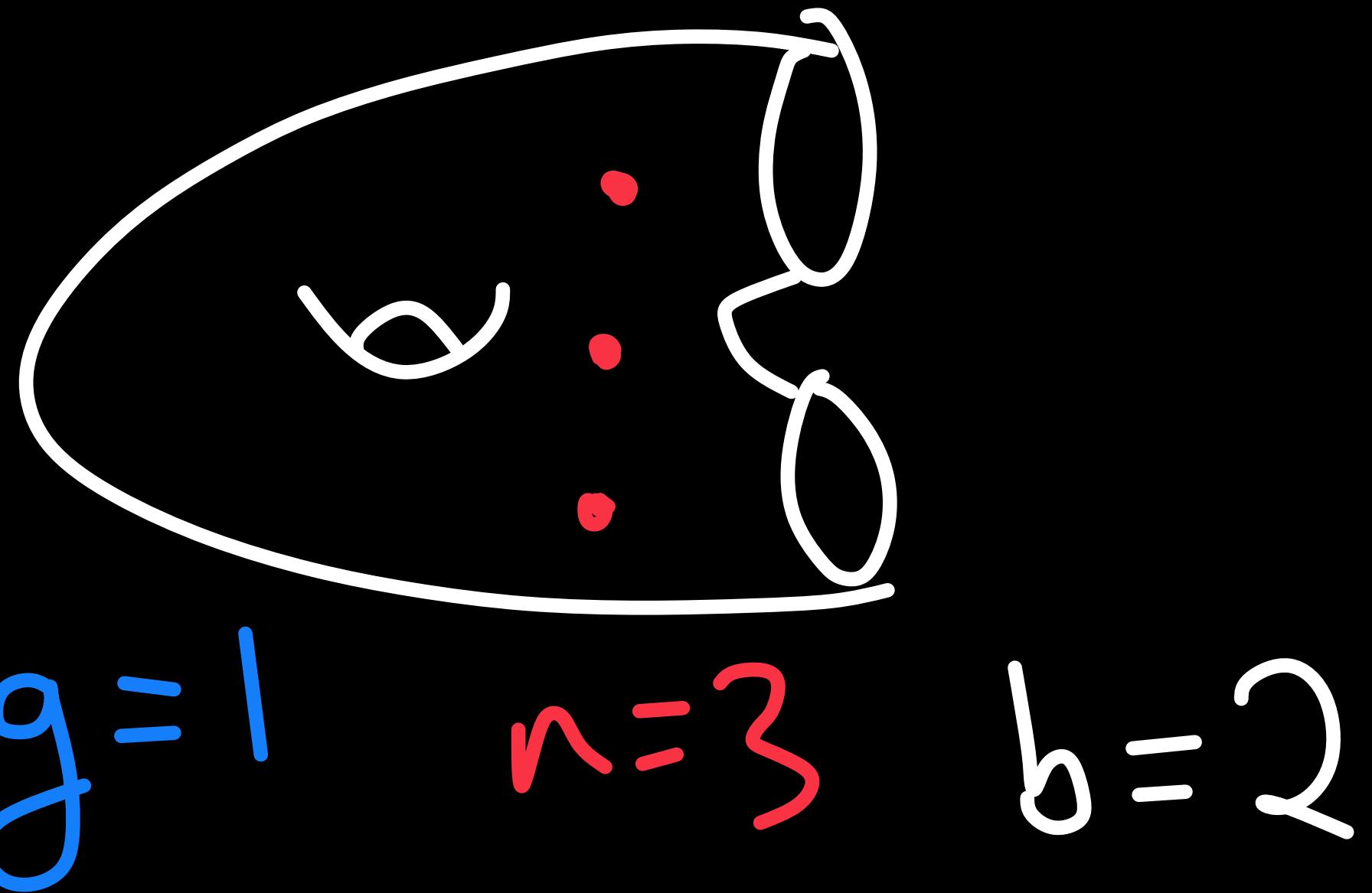


Mapping class groups

Let $\Sigma_{g,n}^b$ be an orientable surface of genus g ,
with n punctures and b boundary components.

The mapping class group $\text{Mod}(\Sigma_{g,n}^b)$ is

$$\text{Mod}(\Sigma_{g,n}^b) = \pi_0 \left(\{f \in \text{Homeo}^+(\Sigma_{g,n}^b) : f|_{\partial\Sigma} = \text{id}_{\partial\Sigma}\} \right).$$



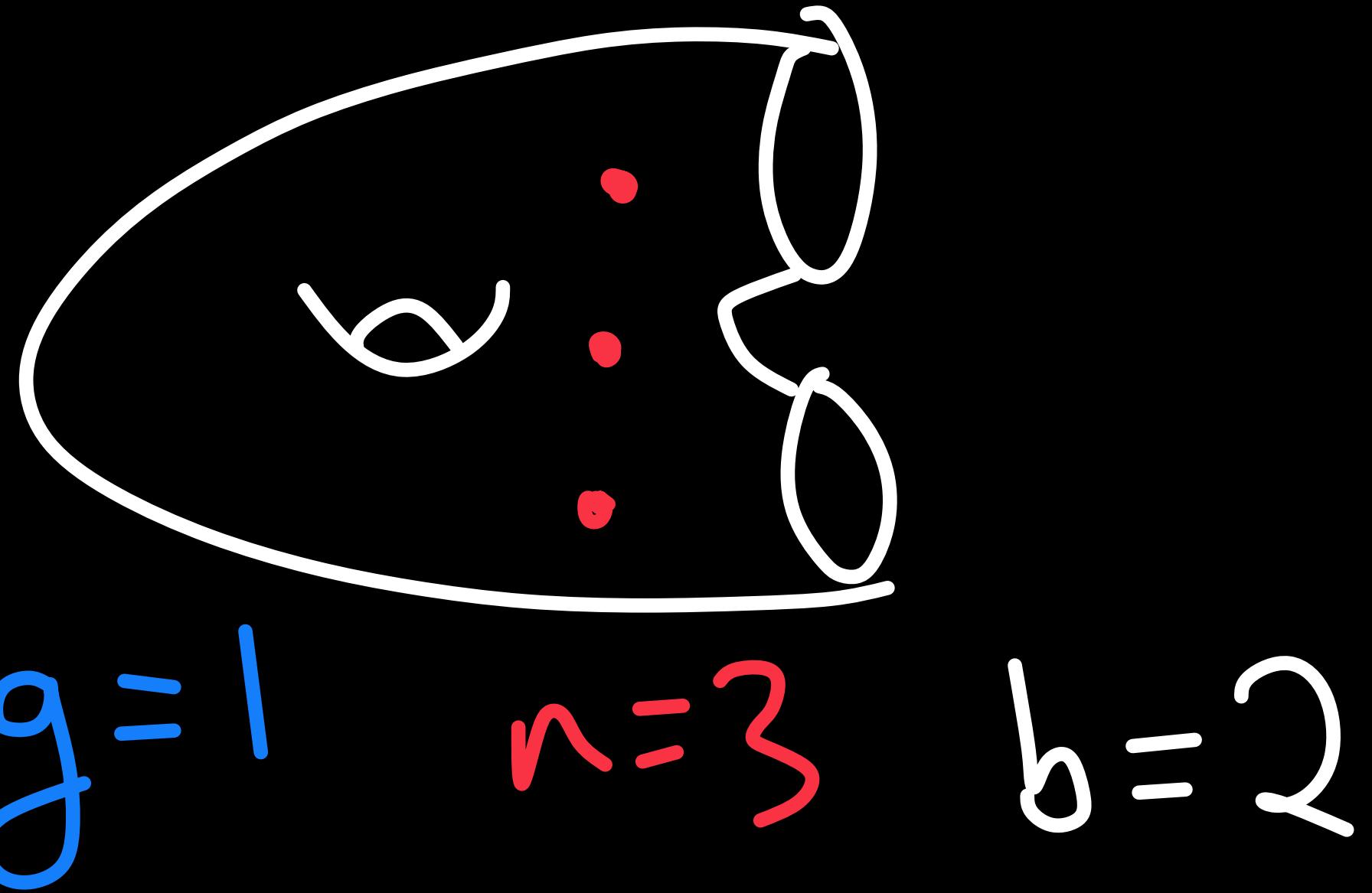
Mapping class groups

Let $\Sigma_{g,n}^b$ be an orientable surface of genus g ,
with n punctures and b boundary components.

The mapping class group $\text{Mod}(\Sigma_{g,n}^b)$ is

$$\text{Mod}(\Sigma_{g,n}^b) = \pi_0 \left(\{f \in \text{Homeo}^+(\Sigma_{g,n}^b) : f|_{\partial\Sigma} = \text{id}_{\partial\Sigma}\} \right).$$

Write $\text{Mod}_{g,n}^b = \text{Mod}(\Sigma_{g,n}^b)$. If n or b are zero we omit them.



Mapping class groups

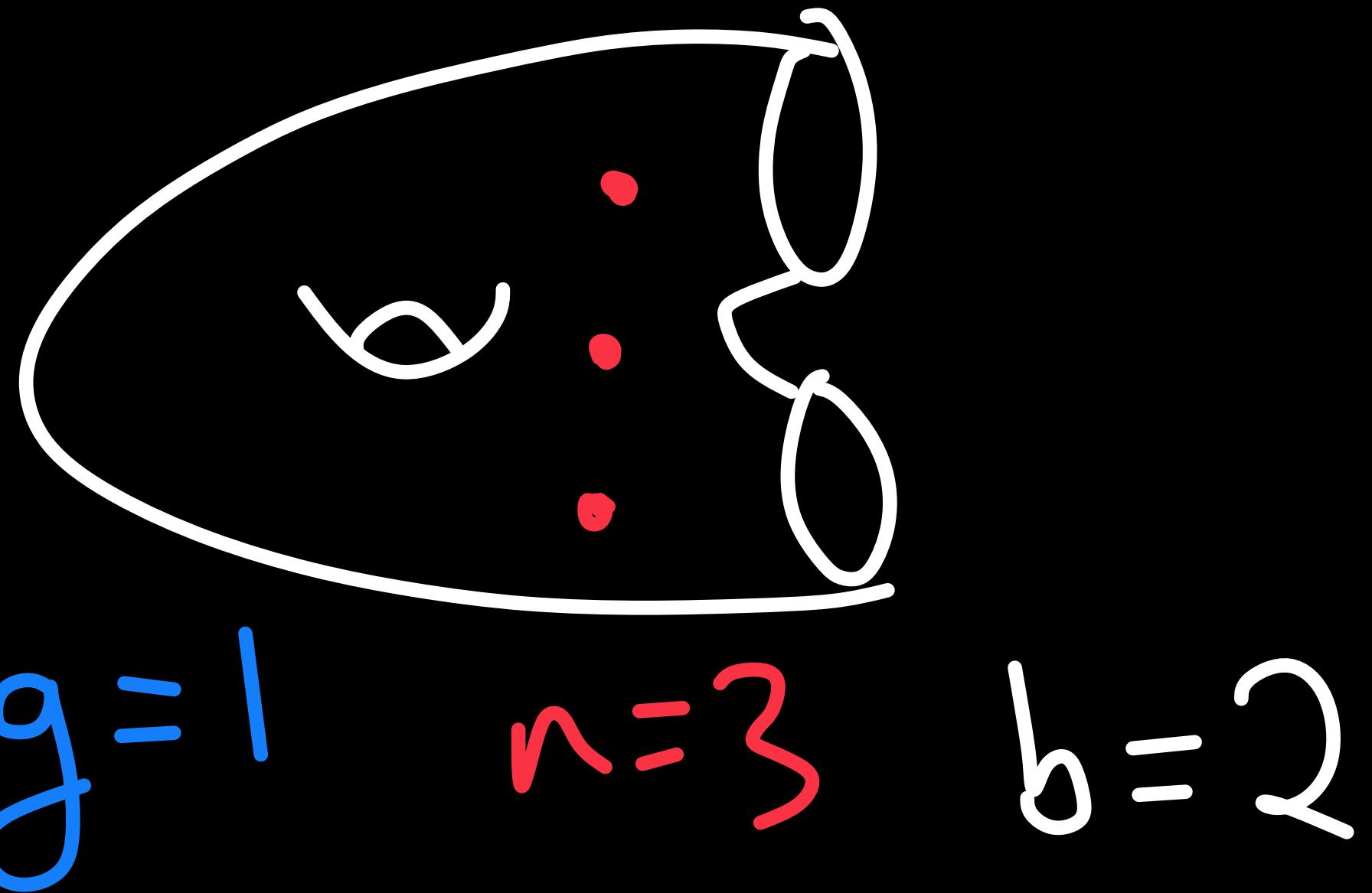
Let $\Sigma_{g,n}^b$ be an orientable surface of genus g ,
with n punctures and b boundary components.

The mapping class group $\text{Mod}(\Sigma_{g,n}^b)$ is

$$\text{Mod}(\Sigma_{g,n}^b) = \pi_0 \left(\{f \in \text{Homeo}^+(\Sigma_{g,n}^b) : f|_{\partial\Sigma} = \text{id}_{\partial\Sigma}\} \right).$$

Write $\text{Mod}_{g,n}^b = \text{Mod}(\Sigma_{g,n}^b)$. If n or b are zero we omit them.

We have $\pi_1(\mathcal{M}_{g,n}/S_n) \cong \text{Mod}_{g,n}$.



Mapping class groups

Let $\Sigma_{g,n}^b$ be an orientable surface of genus g ,
with n punctures and b boundary components.

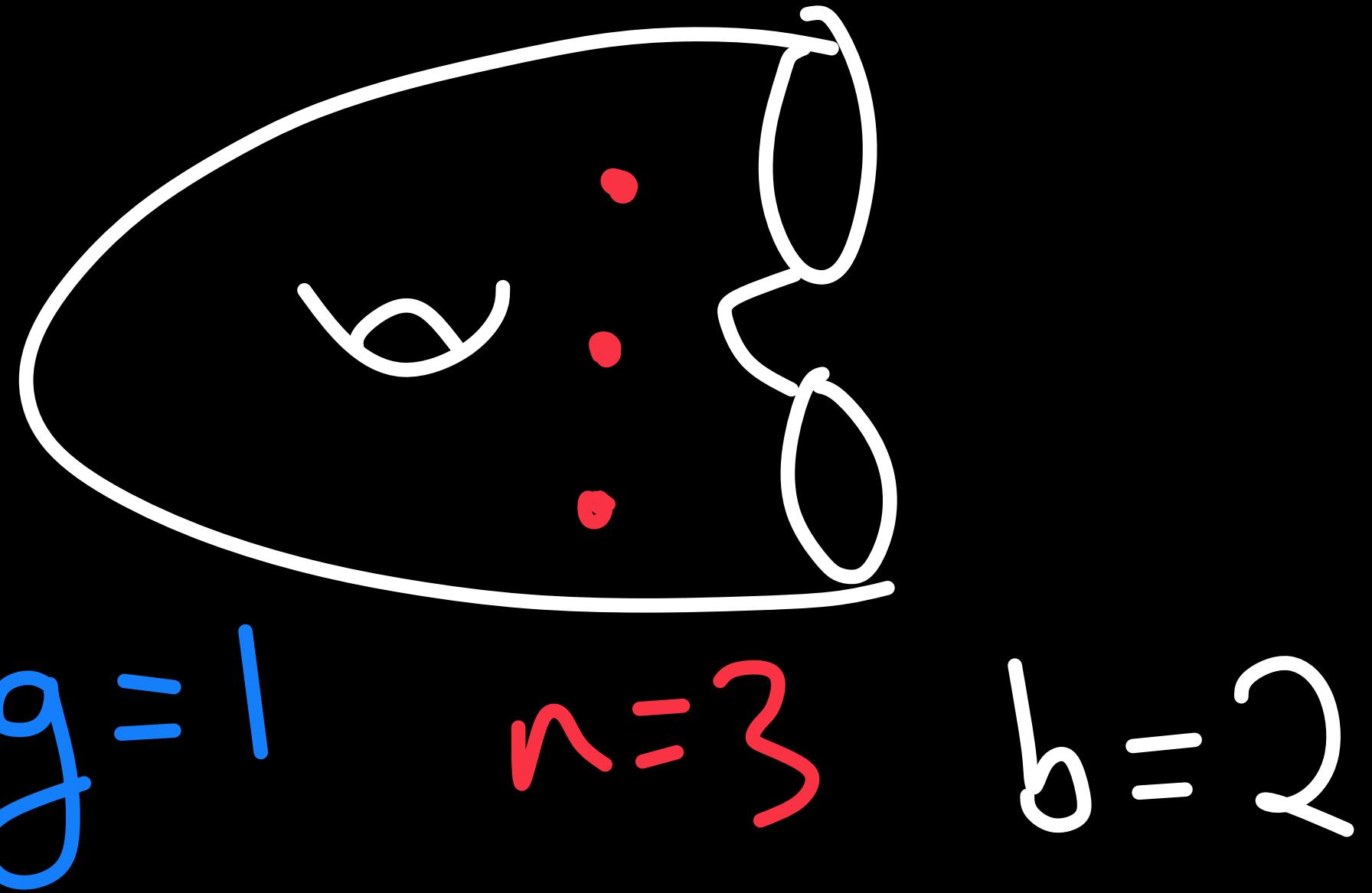
The mapping class group $\text{Mod}(\Sigma_{g,n}^b)$ is

$$\text{Mod}(\Sigma_{g,n}^b) = \pi_0 \left(\{f \in \text{Homeo}^+(\Sigma_{g,n}^b) : f|_{\partial\Sigma} = \text{id}_{\partial\Sigma}\} \right).$$

Write $\text{Mod}_{g,n}^b = \text{Mod}(\Sigma_{g,n}^b)$. If n or b are zero we omit them.

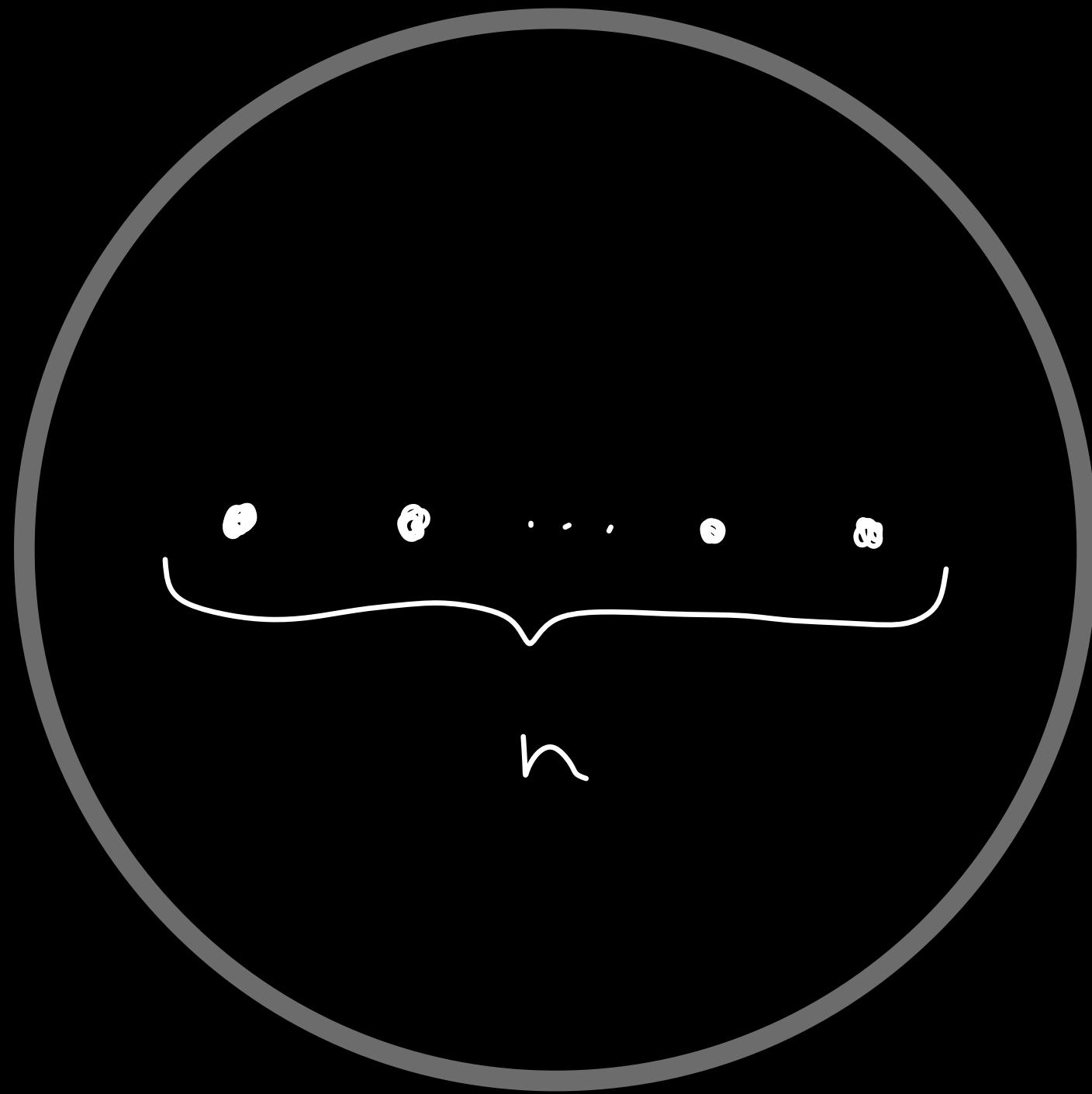
We have $\pi_1(\mathcal{M}_{g,n}/S_n) \cong \text{Mod}_{g,n}$.

Special case: $\text{Mod}_{1,1} \cong \text{SL}_2 \mathbb{Z}$.



Braid group as mapping class group

The braid group is also a mapping class group.

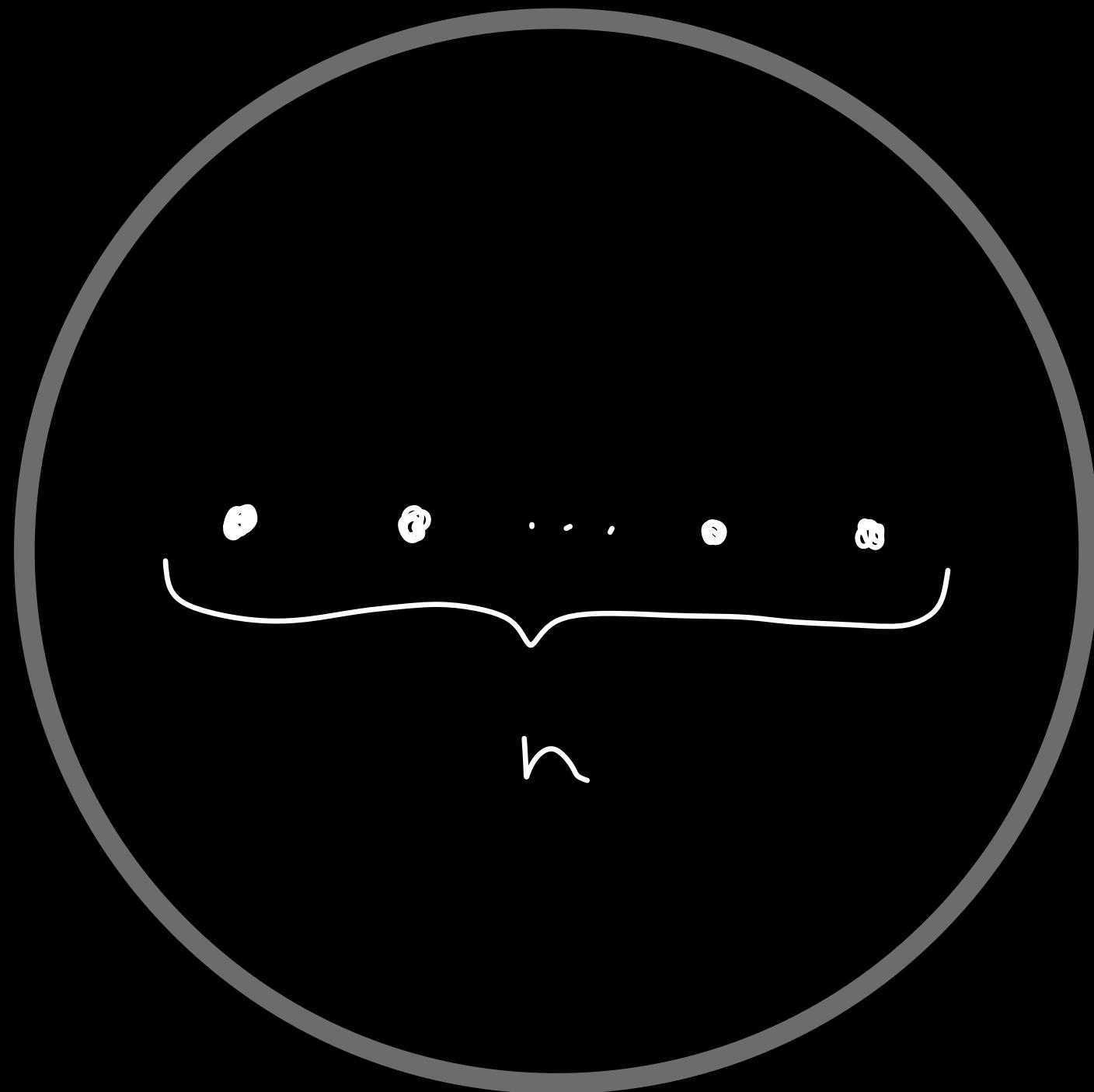


$$\Sigma_{0,n}^1$$

Braid group as mapping class group

The braid group is also a mapping class group.

The natural map $B_n \rightarrow \text{Mod}_{0,n}^1$ is an isomorphism.



$$\Sigma_{0,n}^1$$

Dehn twists

Let γ be a curve in an orientable surface Σ . The *Dehn twist* $T_\gamma \in \text{Mod}(\Sigma)$ about γ is defined as follows.

Dehn twists

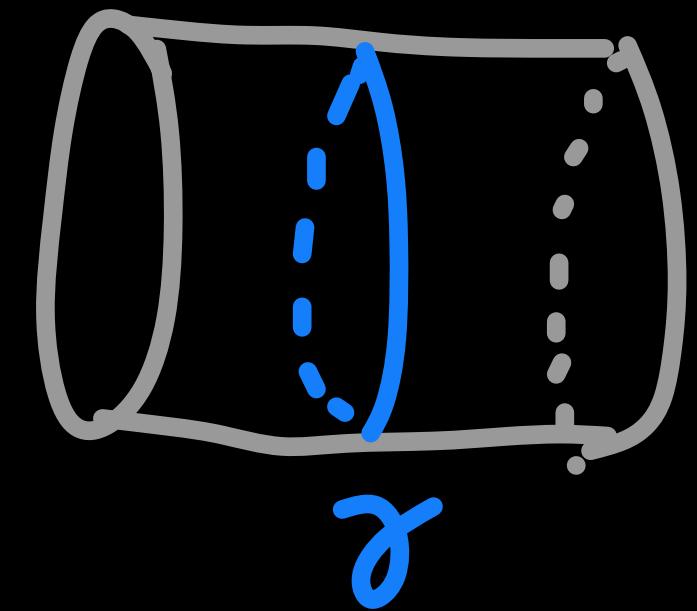
Let γ be a curve in an orientable surface Σ . The *Dehn twist* $T_\gamma \in \text{Mod}(\Sigma)$ about γ is defined as follows.

Take an annular neighborhood of γ , viewed as the cylinder $S^1 \times [0,1]$.

Dehn twists

Let γ be a curve in an orientable surface Σ . The *Dehn twist* $T_\gamma \in \text{Mod}(\Sigma)$ about γ is defined as follows.

Take an annular neighborhood of γ , viewed as the cylinder $S^1 \times [0,1]$.

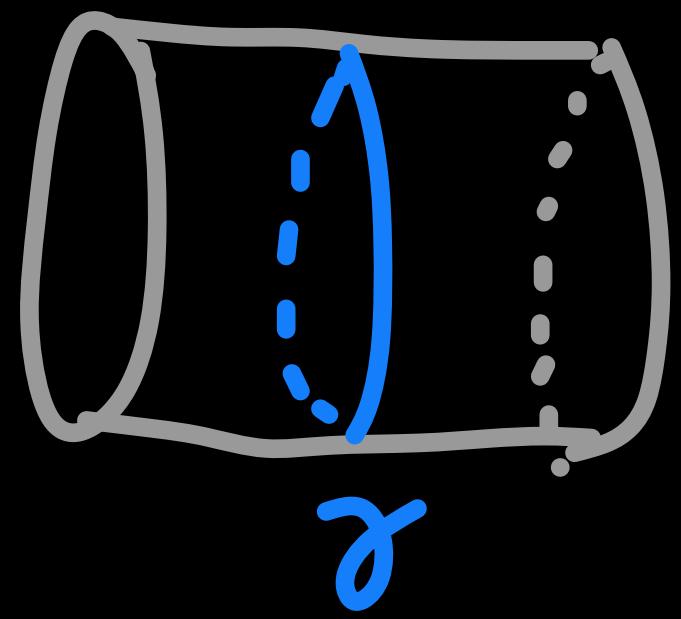


Dehn twists

Let γ be a curve in an orientable surface Σ . The *Dehn twist* $T_\gamma \in \text{Mod}(\Sigma)$ about γ is defined as follows.

Take an annular neighborhood of γ , viewed as the cylinder $S^1 \times [0,1]$.

Then T_γ acts by $(e^{i\theta}, t) \mapsto (e^{i(\theta+2\pi t)}, t)$ on the annulus, and the identity elsewhere.

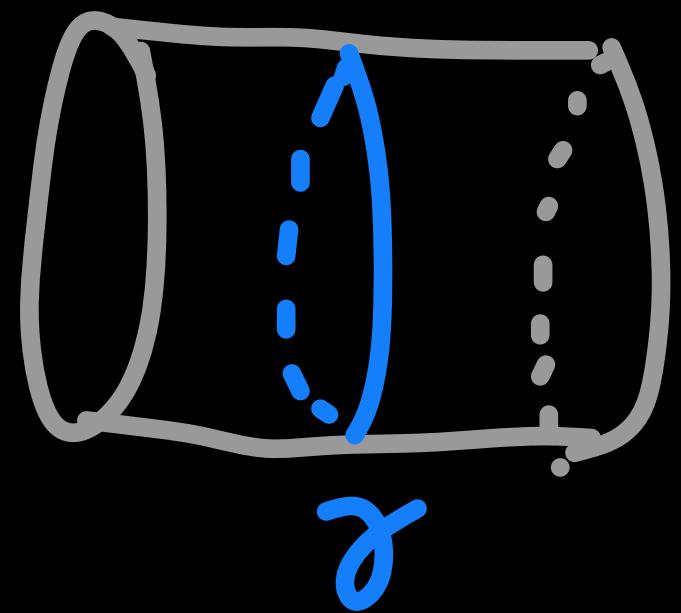


Dehn twists

Let γ be a curve in an orientable surface Σ . The *Dehn twist* $T_\gamma \in \text{Mod}(\Sigma)$ about γ is defined as follows.

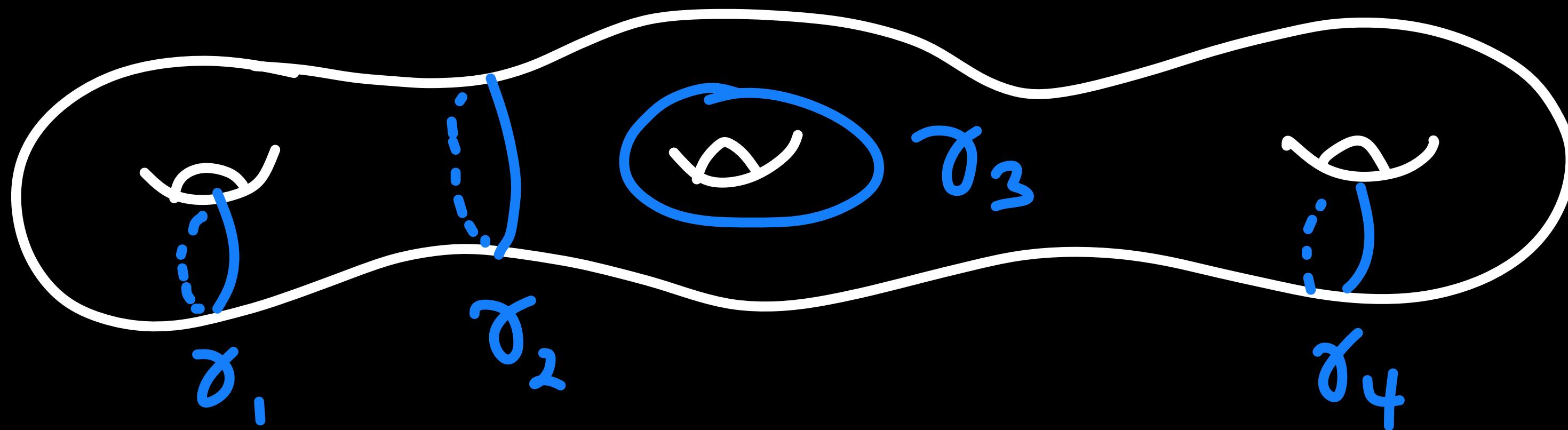
Take an annular neighborhood of γ , viewed as the cylinder $S^1 \times [0,1]$.

Then T_γ acts by $(e^{i\theta}, t) \mapsto (e^{i(\theta+2\pi t)}, t)$ on the annulus, and the identity elsewhere.



Multitwists

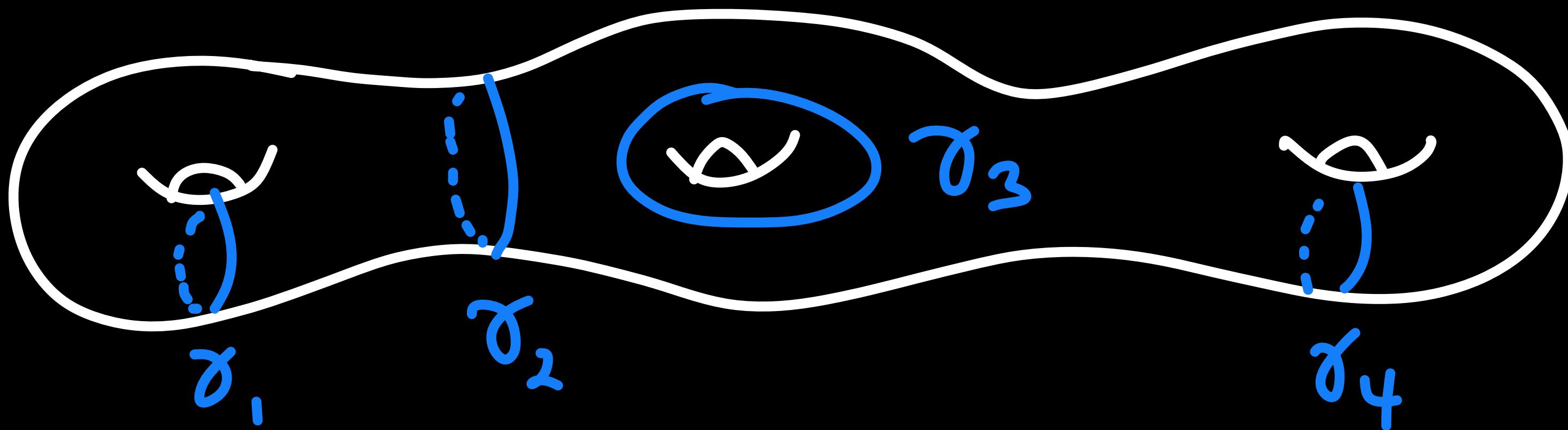
If we choose a collection $\gamma_1, \dots, \gamma_n$ of disjoint curves on an orientable surface Σ , then the Dehn twists $T_{\gamma_1}, \dots, T_{\gamma_n}$ all commute in $\text{Mod}(\Sigma)$.



Multitwists

If we choose a collection $\gamma_1, \dots, \gamma_n$ of disjoint curves on an orientable surface Σ , then the Dehn twists $T_{\gamma_1}, \dots, T_{\gamma_n}$ all commute in $\text{Mod}(\Sigma)$.

We call an element of the subgroup $\langle T_{\gamma_1}, \dots, T_{\gamma_n} \rangle \cong \mathbb{Z}^n$ a *multitwist*.



Thank you!