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Moduli spaces and holomorphic maps
Constructions in algebraic geometry can often give rise to surprising maps 
between moduli spaces.


Over , these maps are usually holomorphic.


• Can we describe all holomorphic maps between given moduli spaces?


• Are they all given by some previously known algebraic construction?

ℂ



Configuration spaces

 if 


The space of unordered sets  of  distinct points in .

UConfnX = ( {(x1, …, xn) ∈ Xn : xi ≠ xj i ≠ j} ) / Sn

= { {x1, …, xn} n X}



Configuration spaces

 if 


The space of unordered sets  of  distinct points in .

UConfnX = ( {(x1, …, xn) ∈ Xn : xi ≠ xj i ≠ j} ) / Sn

= { {x1, …, xn} n X}

∈ UConf4ℂ



Resolving the quartic
Ferrari in 1545 solves the quartic equation by constructing a cubic 
polynomial from a given quartic.



Resolving the quartic
Ferrari in 1545 solves the quartic equation by constructing a cubic 
polynomial from a given quartic.


The following holomorphic map describes what happens to the roots.



Resolving the quartic
Ferrari in 1545 solves the quartic equation by constructing a cubic 
polynomial from a given quartic.


The following holomorphic map describes what happens to the roots.


R : UConf4ℂ → UConf3ℂ
{x1, …, x4} ↦ {x1x4 + x2x3, x1x3 + x2x4, x1x2 + x3x4}
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A genus  Riemann surface is a complex 1-manifold.                      
homeomorphic to a genus  surface.


We can equip it with a sequence of marked points.


The moduli space of genus  Riemann surfaces equipped with an ordered list 
of  marked points (up to isomorphism) is .


We write  for the unordered variant, and also .

g
g

g
n ℳg,n

ℳg,n / Sn ℳg = ℳg,0

Moduli spaces
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Let  be distinct.

The equation  defines an elliptic curve.


This defines a holomorphic map .

x1, x2, x3 ∈ ℂ
y2 = (x − x1)(x − x2)(x − x3)

UConf3ℂ → ℳ1,1

Constructing elliptic curves
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Let  be a Riemann surface of genus . Consider the cover of  
corresponding to the kernel of the natural map .


By pulling back the Riemann surface structure of  we obtain a new 
Riemann surface  of genus .


This defines a holomorphic map  where .

X g X
π1(X) → H1(X; ℤ/2ℤ)

X
Y h = 22g(g − 1) + 1

ℳg → ℳh h = 22g(g − 1) + 1

Covering construction



Resolving the quartic: .


Elliptic curves: 


Covering construction: .


UConf4ℂ → UConf3ℂ

UConf3ℂ → ℳ1,1

ℳg → ℳ22g(g−1)+1

Examples so far



Resolving the quartic: .


Elliptic curves: 


Covering construction: .


Many constructions coming from other famous stories, e.g. the 27 lines on a 
smooth cubic surface, the Jacobian of a Riemann surface, …

UConf4ℂ → UConf3ℂ

UConf3ℂ → ℳ1,1

ℳg → ℳ22g(g−1)+1

Examples so far
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What are the holomorphic maps ?


What are the holomorphic maps ?


What are the holomorphic maps ?


And many more.


Each of the above are open in general, but have been solved in ranges.

UConfnℂ → UConfmℂ

UConfnℂ → ℳg,m

ℳg,n → ℳh,m

Sample questions
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Let  and .
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Let  and .


If  is non-constant holomorphic, then  and  

associates to  the hyperelliptic Riemann surface defined by


.

n ≥ 26 g ≤ n − 2

f : UConfnℂ → ℳg g = ⌊n − 1
2 ⌋ f

{x1, …, xn}

y2 = (x − x1)⋯(x − xn)

Theorem (Chen—Salter, ‘23)
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Let , , and .


If  is a non-constant holomorphic map, then , 
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Theorem (De Pool—Souto, ‘24)



Let , , and .


If  is a non-constant holomorphic map, then , , 
and  is given by forgetting some marked points. 

g ≥ 4 h ≤ 3 ⋅ 2g−3 n, m ≥ 0

f : ℳg,n → ℳh,m g = h m ≤ n
f

Theorem (De Pool—Souto, ‘24)
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Let , and let  denote the affine group.


If  is holomorphic then, after post-composing with 
the quotient map , it is either constant or 

 and it agrees with Ferrari’s construction.

n > m ≥ 2 Aff ≅ ℂ ⋊ ℂ*

f : UConfnℂ → UConfmℂ
UConfmℂ → (UConfmℂ)/Aff

(n, m) = (4,3)

Theorem (H—Schillewaert, ‘23)
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The following two questions are often related:


What are the holomorphic maps ?


What are the homomorphisms ?


ℳ → 𝒩

π1(ℳ) → π1(𝒩)

The fundamental group



Braid groups
The fundamental group  is the braid group .π1(UConfnℂ) Bn = ⟨σ1, …, σn−1⟩
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Example:  induces R : UConf4ℂ → UConf3ℂ R* : B4 → B3

R*(σ3) = σ1
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Mapping class groups
Let  be an orientable surface of genus ,                                                              
with  punctures and  boundary components.


The mapping class group  is


.


Write . If  or  are zero we omit them.


We have .


Special case: .

Σb
g,n g
n b

Mod(Σb
g,n)

Mod(Σb
g,n) = π0({f ∈ Homeo+(Σb

g,n) : f |∂Σ = id∂Σ})
Modb

g,n = Mod(Σb
g,n) n b

π1(ℳg,n/Sn) ≅ Modg,n

Mod1,1 ≅ SL2ℤ
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Braid group as mapping class group

The braid group is also a mapping class group.


The natural map  is an isomorphism.Bn → Mod1
0,n

Σ1
0,n
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defined as follows.


Take an annular neighborhood of , viewed as the cylinder .


Then  acts by  on the annulus, and the identity

elsewhere.


 

γ Σ Tγ ∈ Mod(Σ) γ

γ S1 × [0,1]

Tγ (eiθ, t) ↦ (ei(θ+2πt), t)



Multitwists
If we choose a collection  of disjoint curves on an orientable surface , then 
the Dehn twists  all commute in .


γ1, …, γn Σ
Tγ1

, …, Tγn
Mod(Σ)



Multitwists
If we choose a collection  of disjoint curves on an orientable surface , then 
the Dehn twists  all commute in .


We call an element of the subgroup  a multitwist.

γ1, …, γn Σ
Tγ1

, …, Tγn
Mod(Σ)

⟨Tγ1
, …, Tγn

⟩ ≅ ℤn



Thank you!


