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A small recap...

» Pattern formation often requires techniques to simulate/analyse
nonlinear PDEs

» Things we can do: numerical simulations (IVP), numerical
continuation (root finding), weakly nonlinear analysis

» Things we can prove in 1D: Existence proofs for specific families of
patterns, fronts and waves, spatially localisation of patterns and
pinned defects
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Computer assisted proofs (CAPs) in nonlinear analysis

We want to construct algorithms that provide an approximate solution to
a problem together with precise and possibly efficient bounds within
which a rigorous exact solution is guaranteed to exist.

This area uses ideas from
> scientific computing
» functional analysis
» approximation theory
» numerical analysis

» topological methods

We will use a contraction mapping argument on a Newton-like operator
to identify closed balls in a Banach space with bounds on error and on
uniqueness.

Based on slides from the SIAM Gene Golub Summer School 2025



Preliminaries 1: existence theorem

Let X, Y are Banach spaces together with a smooth F : X — Y. We
want solutions x € X such that

F(x)=0

» Solutions can be an equilibrium, periodic solution, a bifurcating
solution, a connecting orbit, etc.

» Often we have multiple efficient numerical methods to obtain a
finite approximation of a solution as X € X with F(X) =~ 0

» a-posteriori existence theorem: \We want to prove the existence of a

unique true solution x € X ‘near’ a ‘good’ approximate solution
X € X that we already know

Based on slides from the SIAM Gene Golub Summer School 2025



Preliminaries 2: Newton's method

» Let a scalar function f(x) that is C? have a solution x* such that
f(x*) =0 and f'(x*) # 0.

» Then there exists € > 0 such that for all a € (x* — €, x* +¢),
Newton iterations
f(xn)

Ml = T )
n

initialised at x = a will converge to x* with contraction property

[xpe1 — x| < alx, — X*|2

> Every iterate gets closer to the true solution — contraction

» What if we do not know x* and do not know about properties of f,
but only have an approximate solution xp with a small f(xg)?
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Preliminaries 3: extending to infinite dimensions

» Given X a Banach space, F: X — Y a smooth map and B C X is
closed

» B is a complete metric space - inherits norm from X

» F : X — Y is Fréchet differentiable at xg € X, if there exists a
bounded linear operator A: X — Y having

||F(x0 + h) = F(x0) — Ahlly

/I'mh%o ||hHX =0
> A if it exists, is unique
» Therefore we define,
DF(xp) == A

and call A the derivative of F at xg



Preliminaries 4:

» Every point x € X has an associated DF(x) in a Banach space
G(X, Y). If this correspondence is continuous, we say F € C!(X,Y)

> If Fe CY(X,Y), M >0 and has

sup |[[DF(w)lex, vy <M B C X, B is convex
weB

then for x1,x € B,
[[F(x1) = F(x)lly < Mllxi — x| x
» Given B C X and B is convex, if

sup [|[DF(w)ll¢(x,v) <1
weB

then F is a contraction on the complete metric space B

» Fixed point theorem: If B is a complete metric space and F is a
contraction mapping, then F has a unique fixed point within B



a-posteriori existence theorem setup

» Let X, Y be Banach spaces and F = C(X,Y)
» We have an approximate solution X € X with ||F(X)||x < 1

» NOTE: there is no generic reason why F should be a contraction
near X

» For the Newton method in Banach space, x,+1 = x, + h, where h,
is a solution to the linear equation

DF(Xn)hn - _F(Xn)

» This suggests that we look for fixed points of near x for

T(x) = x — DF(x)"*F(x) (Newton operator)

» T might be a contraction near X!



a-posteriori existence theorem setup

» Problem 1: Computing DF(x)~* might be problematic

» Approximation 1: Replace inverse of derivative at x with a quantity
independent of x, say the inverse of derivative at X to define

T(x) = x — DF(%)"*F(x) (Newton-like operator)
» Problem 2: DF(x) might still be hard to invert

» Approximation 2: Replace DF(X) with any AT € G(X, Y) and
DF(x)~! with A€ G(Y, X)

» This lets us define T = x — AF(x) as the Newton-like operator
» If Ais injective, then fixed points of T correspond to zeros of F

» Approximation 3: Actually we would like it better if AT ~ DF(x)
and if A= inv(AT)



Newton-Kantorovich theorem

Suppose F : X — Y is continuously differentiable and x € X,
At € G(X,Y) and A€ G(Y,X) and A is one-to-one
We want scalar bounds for

> |AF(X)||x < Yo a-posteriori error
> ||l — AAT||gx) < Zo approximate inverse
> ||A(AT — DF(%)||6(x) < Z1 approximate derivative

> sup,cg,(x) [AIDF(X) — DF(x))ll6(x) < Za(r)r
Llpschltz bound for first derivative

> We require Yo, Zp, Z1 > 0 and Zx(r) : [0,00) — [0, 00) to define the
function
p(r)=2Zo(nNr* — (1 -2y — Z)r+ Yo

» Newton-Kantorovich theorem states that if there is an r > 0 such
that p(r) < 0, then there exists a unique x € B,(x) with F(x) =0



Remarks

» In many applications, it can be arranged that Z(r) and hence p(r)
are polynomial

» Therefore, this method is called the method of radii polynomials

» NOTE: This reduces infinite dimension zero finding problem to a
one-dimensional zero finding problem

» We normally look for intervals | = [r_, ry] such that any r € /
implies p(r) <0

» NOTE: Both limits of interval have to be finite (p(r) — oo as
r — o0) and non-zero (p(0) = Yy > 0)

» r_ gives the sharpest error bounds and ry gives the lower bound on
isolation
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In practice, we need...

» A numerical approximate solution x € X
» A numerical approximation Af of DF(%)
» A numerical approximation A of inv(AT)

» Use some knowledge of the asymptotics of the derivative to define
Al and A

» An ability to check bounds — interval arithmetic



Swift-Hohenberg equation in 1D

ou

E_uuf(1+a§)2u+uu2fu3.

Goal: Develop CAPS of existence of 2d spatially periodic even
equilibrium solutions on the interval Qg := (—d, d) for some d >0

We want F(U) = 0 where U : Qo — R, U(x)=U(-x) and U is 2d periodic

So we can write

U(x) = Z wpU, cos(2m(n/2d)x)

n>0

where wg=1and w, =2 forn>1

Based on slides from the SIAM Gene Golub Summer School 2025



Numerical approximation

We fix 1 = 0.2, v £ 1.6, d = 60 and N = 300.

The paper [Burke & Knobloch. Phys. Rev. E, 2006] provides the following ansatz
Uin; to initialize Newton's method

e 2 o« 382
Uini(z) = 2,/7Msech (%2/5) cos(z), 7 = gy -3

Applying the FFT to u;,; on Qo = (—d,d) gave U;,,; € RVT!, which served as the
initial guess for Newton's method on F'V, yielding the numerical approximation U

Approximate solution for u = 0.2
T

Jean-Philippe Lessard (McGill) CAPs for Swift-Hohenberg on the interval August 13, 2025 8/10



Fourier series representation
Define ¢ : R — R, the Fourier transform of the differential operator as

UE) = ((2m€)* =1 +p
forall £ € R
Plugging in the Fourier series expansion in SH equation, we get
FIU)==LU+UxUxU—-vUxU=0
with LU = ((LU)n)n>0, U U = ((U * U)p)n>0 given component-wise by

(LU)y = L(/)U, and  (UxU)p:=Y UpgUpng

keZ

We define a bounded linear map

F:X— ¢, where ||U]|x=]|LU|]

Based on slides from the SIAM Gene Golub Summer School 2025



Finite numerical representation of a solution

» Numerical methods allow us to recover a finite number of Fourier
coefficients of U, in the vicinity of F close to a true zero U € X

» \We use projection operators to represent the finite dimensional

objects
(n=vyy, = § Un Inl= N
0, [n[<N
and
<N
(nZNU)n _ 0, |I7| =
Uny, [n] <N

» We can identify elements in M=" with vectors in RN*!

» The approximate solution U we assume U = N=N{ such that U has
at most N + 1 non-zero Fourier coefficients

Based on slides from the SIAM Gene Golub Summer School 2025



Constructing an approximate inverse

We define My such that
My : X —=0?:V—= MgW:=UxW

it is the linear discrete convolution multiplication operator associated to

U.

Given NV(U) = U® —vU?, so
DF(U) = £ + DNU]) = L + 3Mg. — 2vMg = L+ My
MyL=1: 2 — (% is compact
This means that given a N big enough, we have
My L=t ~ nsNmyc-tnsh

as a matrix



Computation of bounds - not shown here
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Introduction to interval arithmetic & rounding

» [t is a technique designed to rigorously account for rounding errors
by representing numbers as intervals rather than points

» The endpoints of the intervals are chosen so that they can be stored
exactly on the computer

» Arithmetic operations on intervals produce new intervals that
rigorously enclose all outcomes of the corresponding real-number
operations, including propagation of numerical error

» If F is the set of representable real numbers that the computer can
represent with a given precision, then /A and <7 are functions
R — T, the corresponding round-up and round-down operators

» For every x € R,
A =min{y e F,y <x}

v = max{y € F,y > x}
» NOTE: The equality A(x) > x > /(x) iff x e F

Based on slides from the SIAM Gene Golub Summer School 2025



Rigorous enclosures and elementary operations

>

>

Standing-point arithmetic replaces a number x by the closest
floating point approximation, i.e., either A(x) or v/(x)

Interval arithmetic replaces a real number x by the interval
[x] == [V(x), A(x)]

This interval contains the real number x even if it is not
representable at the current precision

We can extend basic operations to intervals by combining their
definitions with suitable rounding to ensure that the outcome always
encloses the value

If | =[a, b] and J = [c, d] with a,b,c,d € F, then
I+J=[v(a+c), A(b+d)]
and contains by construction {x +y,x € I,y € J}

Many implementations exist: Intlab in Matlab, IntervalArithmetic.jl,
etc.

Based on slides from the SIAM Gene Golub Summer School 2025



Table 2.1:

| d [ N ] Y 7 | Zo(r) | r
30 [2003.52x10"11 [7.84%x107%] 249 | 3.56 x 10~11
60 | 300 | 1.89 x 10711 | 242 x107° | 250 | 1.99 x 10~
100 | 500 | 3.24 x 1071 | 243 x 107° | 251 | 3.34 x 10~11
200 | 800 | 6.50 x 10711 | 5.91 x 1075 | 252 | 6.74 x 10~ 11

Computer-assisted proofs of periodic solutions for different half periods d.



Results for the Swift-Hohenberg Equation

“

Computer-assisted analysis on Fourier coefficients 17 / 17



In summary, CAP allows us to reduce an infinite dimensional zero
finding problem to a one dimensional root finding problem

The way to do this involved proving contraction of a Newton-like
operator and use the Banach fixed point theorem

» Let X be a numerical approximation to F(x) = 0 using a finite
dimensional reduction

» Construct a linear operator A that is the approximate inverse of
DF(x)

» Verify that A is an injective linear operator

> Define a Newton-like operator T(x) = x — AF(x) about the
numerical approximation X

» Consider Bz(r) € X, the closed ball of radius r centered at X
» Find a radius r > 0 such that the operator T is a contraction

mapping

Based on slides from the SIAM Gene Golub Summer School 2025



How can we extend a similar method to
analyse spatial localisation in 2D/3D?
Or to more complicated PDEs?

By Frits Ahlefeldt

CAP is agnostic to dimensions and might be a
viable bridge to answer this question



