
Intra-disciplinary bridges for multi-dimensional
patterns: Part II

Priya Subramanian

with many collaborators: AMR, AJA, EK, VR, CL, MC, etc.



A small recap...

I Pattern formation often requires techniques to simulate/analyse
nonlinear PDEs

I Things we can do: numerical simulations (IVP), numerical
continuation (root finding), weakly nonlinear analysis

I Things we can prove in 1D: Existence proofs for specific families of
patterns, fronts and waves, spatially localisation of patterns and
pinned defects
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Computer assisted proofs (CAPs) in nonlinear analysis

We want to construct algorithms that provide an approximate solution to
a problem together with precise and possibly efficient bounds within
which a rigorous exact solution is guaranteed to exist.

This area uses ideas from

I scientific computing

I functional analysis

I approximation theory

I numerical analysis

I topological methods

We will use a contraction mapping argument on a Newton-like operator
to identify closed balls in a Banach space with bounds on error and on
uniqueness.

Based on slides from the SIAM Gene Golub Summer School 2025



Preliminaries 1: existence theorem

Let X ,Y are Banach spaces together with a smooth F : X → Y . We
want solutions x ∈ X such that

F (x) = 0

I Solutions can be an equilibrium, periodic solution, a bifurcating
solution, a connecting orbit, etc.

I Often we have multiple efficient numerical methods to obtain a
finite approximation of a solution as x̄ ∈ X with F (x̄) ≈ 0

I a-posteriori existence theorem: We want to prove the existence of a
unique true solution x ∈ X ‘near’ a ‘good’ approximate solution
x̄ ∈ X that we already know
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Preliminaries 2: Newton’s method

I Let a scalar function f (x) that is C 2 have a solution x∗ such that
f (x∗) = 0 and f ′(x∗) 6= 0.

I Then there exists ε > 0 such that for all a ∈ (x∗ − ε, x∗ + ε),
Newton iterations

xn+1 = xn −
f (xn)

f ′(xn)
,

initialised at x = a will converge to x∗ with contraction property

|xn+1 − x∗| ≤ α|xn − x∗|2

I Every iterate gets closer to the true solution → contraction

I What if we do not know x∗ and do not know about properties of f ,
but only have an approximate solution x0 with a small f (x0)?

I Hand wave!
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Preliminaries 3: extending to infinite dimensions

I Given X a Banach space, F : X → Y a smooth map and B ⊂ X is
closed

I B is a complete metric space - inherits norm from X

I F : X → Y is Fréchet differentiable at x0 ∈ X , if there exists a
bounded linear operator A : X → Y having

limh→0
||F (x0 + h)− F (x0)− Ah||Y

||h||X
= 0

I A if it exists, is unique

I Therefore we define,
DF (x0) := A

and call A the derivative of F at x0



Preliminaries 4:

I Every point x ∈ X has an associated DF (x) in a Banach space
G (X ,Y ). If this correspondence is continuous, we say F ∈ C 1(X ,Y )

I If F ∈ C 1(X ,Y ), M ≥ 0 and has

sup
w∈B
||DF (w)||G(X ,Y ) ≤ M B ⊂ X ,B is convex

then for x1, x2 ∈ B,

||F (x1)− F (x2)||Y ≤ M||x1 − x2||X
I Given B ⊂ X and B is convex, if

sup
w∈B
||DF (w)||G(X ,Y ) < 1

then F is a contraction on the complete metric space B

I Fixed point theorem: If B is a complete metric space and F is a
contraction mapping, then F has a unique fixed point within B



a-posteriori existence theorem setup

I Let X ,Y be Banach spaces and F = C 1(X ,Y )

I We have an approximate solution x̄ ∈ X with ||F (x̄)||X � 1

I NOTE: there is no generic reason why F should be a contraction
near x̄

I For the Newton method in Banach space, xn+1 = xn + hn where hn
is a solution to the linear equation

DF (xn)hn = −F (xn)

I This suggests that we look for fixed points of near x̄ for

T (x) = x − DF (x)−1F (x) (Newton operator)

I T might be a contraction near x̄!



a-posteriori existence theorem setup

I Problem 1: Computing DF (x)−1 might be problematic

I Approximation 1: Replace inverse of derivative at x with a quantity
independent of x , say the inverse of derivative at x̄ to define

T (x) = x − DF (x̄)−1F (x) (Newton-like operator)

I Problem 2: DF (x̄) might still be hard to invert

I Approximation 2: Replace DF (x̄) with any A† ∈ G (X ,Y ) and
DF (x̄)−1 with A ∈ G (Y ,X )

I This lets us define T = x − AF (x) as the Newton-like operator

I If A is injective, then fixed points of T correspond to zeros of F

I Approximation 3: Actually we would like it better if A† ≈ DF (x̄)
and if A ≈ inv(A†)



Newton-Kantorovich theorem

Suppose F : X → Y is continuously differentiable and x̄ ∈ X ,
A† ∈ G (X ,Y ) and A ∈ G (Y ,X ) and A is one-to-one
We want scalar bounds for

I ||AF (x̄)||X ≤ Y0 a-posteriori error

I ||I − AA†||G(X ) ≤ Z0 approximate inverse

I ||A(A† − DF (x̄)||G(X ) ≤ Z1 approximate derivative

I supx∈Br (x̄) ||A(DF (x̄)− DF (x))||G(X ) ≤ Z2(r)r
Lipschitz bound for first derivative

I We require Y0,Z0,Z1 > 0 and Z2(r) : [0,∞)→ [0,∞) to define the
function

p(r) = Z2(r)r2 − (1− Z0 − Z1)r + Y0

I Newton-Kantorovich theorem states that if there is an r > 0 such
that p(r) < 0, then there exists a unique x ∈ Br (x̄) with F (x) = 0



Remarks

I In many applications, it can be arranged that Z2(r) and hence p(r)
are polynomial

I Therefore, this method is called the method of radii polynomials

I NOTE: This reduces infinite dimension zero finding problem to a
one-dimensional zero finding problem

I We normally look for intervals I = [r−, r+] such that any r ∈ I
implies p(r) < 0

I NOTE: Both limits of interval have to be finite (p(r)→∞ as
r →∞) and non-zero (p(0) = Y0 > 0)

I r− gives the sharpest error bounds and r+ gives the lower bound on
isolation













In practice, we need...

I A numerical approximate solution x̄ ∈ X

I A numerical approximation A† of DF (x̄)

I A numerical approximation A of inv(A†)

I Use some knowledge of the asymptotics of the derivative to define
A† and A

I An ability to check bounds – interval arithmetic



Swift-Hohenberg equation in 1D

∂U

∂t
= µU − (1 + ∂2

x )2U + νU2 − U3 .

Goal: Develop CAPS of existence of 2d spatially periodic even
equilibrium solutions on the interval Ω0 := (−d , d) for some d > 0

We want F (U) = 0 where U : Ω0 → R, U(x)=U(-x) and U is 2d periodic

So we can write

U(x) =
∑

n≥0

ωnUn cos(2π(n/2d)x)

where ω0 = 1 and ωn = 2 for n ≥ 1
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Numerical approximation

We fix µ
def
= 0.2, ν

def
= 1.6, d = 60 and N = 300.

The paper [Burke & Knobloch. Phys. Rev. E, 2006] provides the following ansatz
uini to initialize Newton’s method

uini(x)
def
= 2

√
2µ

γ
sech

(
x
√
µ

2

)
cos(x), γ

def
=

38ν2

9
− 3

Applying the FFT to uini on Ω0 = (−d, d) gave Uini ∈ RN+1, which served as the
initial guess for Newton’s method on FN , yielding the numerical approximation Ū
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Fourier series representation
Define ` : R→ R, the Fourier transform of the differential operator as

`(ξ) := ((2πξ)2 − 1)2 + µ

for all ξ ∈ R

Plugging in the Fourier series expansion in SH equation, we get

F (U) =:= LU + U ∗ U ∗ U − νU ∗ U = 0

with LU = ((LU)n)n≥0, U ∗U = ((U ∗U)n)n≥0 given component-wise by

(LU)n := `(ñ)Un and (U ∗ U)n :=
∑

k∈Z
U|k|U|n−k|

We define a bounded linear map

F : X → `2, where ||U||X = ||LU||2

Based on slides from the SIAM Gene Golub Summer School 2025



Finite numerical representation of a solution

I Numerical methods allow us to recover a finite number of Fourier
coefficients of Ū, in the vicinity of F close to a true zero U ∈ X

I We use projection operators to represent the finite dimensional
objects

(Π≤NU)n =

{
Un, |n| ≤ N

0, |n| ≤ N

and

(Π≥NU)n =

{
0, |n| ≤ N

Un, |n| ≤ N

I We can identify elements in Π≤N with vectors in RN+1

I The approximate solution Ū we assume Ū = Π≤N Ū such that Ū has
at most N + 1 non-zero Fourier coefficients
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Constructing an approximate inverse

We define MU such that

MU : X → `2 : V → MUW := U ∗W

it is the linear discrete convolution multiplication operator associated to
U.

Given N (U) = U3 − νU2, so

DF (Ū) = L+ DN [Ū] = L+ 3MŪ2 − 2νMŪ = L + MV̄

MV̄L−1 : `2 → `2 is compact

This means that given a N big enough, we have

MV̄L−1 ≈ Π≤NMV̄L−1Π≤N

as a matrix



Computation of bounds - not shown here



In practice, we need...
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Introduction to interval arithmetic & rounding

I It is a technique designed to rigorously account for rounding errors
by representing numbers as intervals rather than points

I The endpoints of the intervals are chosen so that they can be stored
exactly on the computer

I Arithmetic operations on intervals produce new intervals that
rigorously enclose all outcomes of the corresponding real-number
operations, including propagation of numerical error

I If F is the set of representable real numbers that the computer can
represent with a given precision, then 4 and 5 are functions
R→ F, the corresponding round-up and round-down operators

I For every x ∈ R,

4 = min{y ∈ F, y ≤ x}
5 = max{y ∈ F, y ≥ x}

I NOTE: The equality 4(x) ≥ x ≥ 5(x) iff x ∈ F
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Rigorous enclosures and elementary operations
I Standing-point arithmetic replaces a number x by the closest

floating point approximation, i.e., either 4(x) or 5(x)

I Interval arithmetic replaces a real number x by the interval

[x ] := [5(x),4(x)]

I This interval contains the real number x even if it is not
representable at the current precision

I We can extend basic operations to intervals by combining their
definitions with suitable rounding to ensure that the outcome always
encloses the value

I If I = [a, b] and J = [c , d ] with a, b, c , d ∈ F, then

I + J = [5(a + c),4(b + d)]

and contains by construction {x + y , x ∈ I , y ∈ J}
I Many implementations exist: Intlab in Matlab, IntervalArithmetic.jl,

etc.
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Results for the Swift-Hohenberg Equation
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In summary, CAP allows us to reduce an infinite dimensional zero
finding problem to a one dimensional root finding problem

The way to do this involved proving contraction of a Newton-like
operator and use the Banach fixed point theorem

I Let x̄ be a numerical approximation to F(x) = 0 using a finite
dimensional reduction

I Construct a linear operator A that is the approximate inverse of
DF(x)

I Verify that A is an injective linear operator

I Define a Newton-like operator T (x) = x −AF(x) about the
numerical approximation x̄

I Consider Bx̄(r) ∈ X , the closed ball of radius r centered at x̄

I Find a radius r > 0 such that the operator T is a contraction
mapping
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How can we extend a similar method to
analyse spatial localisation in 2D/3D?

Or to more complicated PDEs?

CAP is agnostic to dimensions and might be a
viable bridge to answer this question


