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Additive combinatorics

Setup:

Let G be an abelian group.

Given a finite A ⊆ G , define the sumset A + A = {a + b : a, b ∈ A}.

Define the doubling K = |A+A|
|A| .

Theme in additive combinatorics:

Small doubling K ↔ Additively structured A.
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Additive structures and Freiman’s theorem

Example:

G = Z.
For any finite A ⊆ Z:

|A + A| ≤
(|A|+1

2

)
.

|A + A| ≥ 2|A| − 1, with equality iff A is an arithmetic progression.

In general, for bounded d , a generalized arithmetic progression (GAP)

P := x0 +

{
d∑

i=1

aixi : `i ≤ ai ≤ ui

}
has a small doubling.

GAP P (d = 2)
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Additive structures and Freiman-Ruzsa’s theorem

For A ⊆ Z:

|A + A| ≥ 2|A| − 1, with equality iff A is an arithmetic progression.

|A + A| ≤
(|A|+1

2

)
.

In general, any dense subset of a generalized arithmetic progression with bounded
dimension d has bounded doubling K .

Theorem (Freiman’s theorem ’64, Ruzsa ’92, ’94)

If A ⊆ Z is so that |A + A| ≤ K |A|, then A is contained in a GAP P of dimension
d = OK (1) and size |P| = OK (|A|).

Quantitative aspects of Freiman’s theorem are of fundamental interest in additive
combinatorics.
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Perspectives on sets with small doubling

Major theme in additive combinatorics:

A has small doubling |A+A|
|A| ≤ K ⇒ A is structured/ dense in a structured

object.

Applications: Random matrix theory, approximate groups and growth in groups,
sum-product estimates, Szemerédi’s theorem, Meyer set (quasicrystals),
theoretical computer science.

Drawback: Weak quantitative dependence on K , only applicable when K is very
small compared to |A|.

Huy Tuan Pham (Caltech) Additive combinatorics: Combinatorial perspective NZMRI - January 2026 5 / 46



Perspectives on sets with small doubling

Major theme in additive combinatorics:

A has small doubling |A+A|
|A| ≤ K ⇒ A is structured/ dense in a structured

object.

Applications: Random matrix theory, approximate groups and growth in groups,
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Perspectives on sets with small doubling

Many applications require to allow for K to grow in |A| and motivate different
notions of structure:

Structural: What is the structure of sets A with small doubling KA ≤ K?

Statistical: Are there few sets A with small doubling KA ≤ K?

Probabilistic: Can every sumset A + A for A with small doubling KA ≤ K be
efficiently approximated using few bits?

New approach:

Combinatorial: “Forget” the group structure and move to general
graph-theoretic representation of sets with small doubling.

Probabilistic: Probe and approximate the structure of sets with small
doubling via randomness.

Huy Tuan Pham (Caltech) Additive combinatorics: Combinatorial perspective NZMRI - January 2026 6 / 46



Perspectives on sets with small doubling

Many applications require to allow for K to grow in |A| and motivate different
notions of structure:

Structural: What is the structure of sets A with small doubling KA ≤ K?

Statistical: Are there few sets A with small doubling KA ≤ K?

Probabilistic: Can every sumset A + A for A with small doubling KA ≤ K be
efficiently approximated using few bits?

New approach:

Combinatorial: “Forget” the group structure and move to general
graph-theoretic representation of sets with small doubling.

Probabilistic: Probe and approximate the structure of sets with small
doubling via randomness.

Huy Tuan Pham (Caltech) Additive combinatorics: Combinatorial perspective NZMRI - January 2026 6 / 46



Perspectives on sets with small doubling

Many applications require to allow for K to grow in |A| and motivate different
notions of structure:

Structural: What is the structure of sets A with small doubling KA ≤ K?

Statistical: Are there few sets A with small doubling KA ≤ K?

Probabilistic: Can every sumset A + A for A with small doubling KA ≤ K be
efficiently approximated using few bits?

New approach:

Combinatorial: “Forget” the group structure and move to general
graph-theoretic representation of sets with small doubling.

Probabilistic: Probe and approximate the structure of sets with small
doubling via randomness.

Huy Tuan Pham (Caltech) Additive combinatorics: Combinatorial perspective NZMRI - January 2026 6 / 46



Perspectives on sets with small doubling

Many applications require to allow for K to grow in |A| and motivate different
notions of structure:

Structural: What is the structure of sets A with small doubling KA ≤ K?

Statistical: Are there few sets A with small doubling KA ≤ K?

Probabilistic: Can every sumset A + A for A with small doubling KA ≤ K be
efficiently approximated using few bits?

New approach:

Combinatorial: “Forget” the group structure and move to general
graph-theoretic representation of sets with small doubling.

Probabilistic: Probe and approximate the structure of sets with small
doubling via randomness.

Huy Tuan Pham (Caltech) Additive combinatorics: Combinatorial perspective NZMRI - January 2026 6 / 46



Perspectives on sets with small doubling

Many applications require to allow for K to grow in |A| and motivate different
notions of structure:

Structural: What is the structure of sets A with small doubling KA ≤ K?

Statistical: Are there few sets A with small doubling KA ≤ K?

Probabilistic: Can every sumset A + A for A with small doubling KA ≤ K be
efficiently approximated using few bits?

New approach:

Combinatorial: “Forget” the group structure and move to general
graph-theoretic representation of sets with small doubling.

Probabilistic: Probe and approximate the structure of sets with small
doubling via randomness.

Huy Tuan Pham (Caltech) Additive combinatorics: Combinatorial perspective NZMRI - January 2026 6 / 46



New perspectives

New perspectives and new ways to quantify the complexity of sets with small
doubling:

Resolve old questions about classical notion of structure.

Quantitatively efficient or nearly optimal.

Provide nontrivial information already when K = o(|A|).

Combinatorial/Probabilistic perspective: Flexible and generalize significantly
beyond additive setting.
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New perspectives

Complexity notion
Key ingredient

Applications

Expanding structures in
sets with small doubling

Main combinatorial lemma

Ruzsa’s conjecture;

Counting sets with small doubling in general groups;

Ramsey properties of random Cayley graphs -

Alon’s conjecture;

Robust Freiman-Ruzsa lemma;

Random sumset extractors;

Dimension of sets with small doubling

Low-complexity
subsets of sumsets

Efficient covering lemma

Independence number of

sparse random Cayley graphs;

Large sets which are not sumsets (Green);

Structured subsets of sumsets of dense sets (Lovett)

Low-complexity
approximations of sumsets

Approximation lemma

Sharp counting of sets with small doubling

in abelian groups (Alon-Balogh-Morris-Samotij)
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Additive structures and Freiman-Ruzsa’s theorem

We say that an abelian group G has exponent r if r is the smallest integer such
that the order of every group element divides r .

Example: G = Zd
r .

For A ⊆ G for a finite abelian group G :

|A + A| ≥ |A|, with equality iff A is a subgroup of G .

Question

What can we say about sets A ⊆ G with |A + A| ≤ K |A|?
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Additive structures and Freiman-Ruzsa’s theorem

We say that an abelian group G has exponent r if r is the smallest integer such
that the order of every group element divides r .

For A ⊆ G for a finite abelian group G :

|A + A| ≥ |A|, with equality iff A is a subgroup of G .

Theorem (Ruzsa’s theorem, ’99)

If G is an abelian group with exponent r and A ⊆ G is so that |A + A| ≤ K |A|,
then A is contained in subgroup H of size |H| = Or ,K (|A|).

Conjecture (Ruzsa’s conjecture, ’99)

There is a constant C > 0 such that the following holds. If G is an abelian group
with exponent r and A ⊆ G is so that |A + A| ≤ K |A|, then A is contained in
subgroup H of size |H| ≤ rCK |A|.

In general, we may need |H| ≥ r (2−o(1))K |A|.
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Additive structures and Freiman-Ruzsa’s theorem

Theorem (Ruzsa’s theorem, ’99)

If G is an abelian group with exponent r and A ⊆ G is so that |A + A| ≤ K |A|,
then A is contained in subgroup H of size |H| = Or ,K (|A|).

Conjecture (Ruzsa’s conjecture, ’99)

There is a constant C > 0 such that the following holds. If G is an abelian group
with exponent r and A ⊆ G is so that |A + A| ≤ K |A|, then A is contained in
subgroup H of size |H| ≤ rCK |A|.

In general, we may need |H| ≥ r (2−o(1))K |A|.

Example:

G = Zd
r , A = {0, e1, . . . , ed}.

|A + A| = (d+1)(d+2)
2 = d+2

2 |A|.
|〈A〉| = |G | = rd .
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Additive structures and Freiman-Ruzsa’s theorem

Theorem (Ruzsa’s theorem ’99)

If G is an abelian group with exponent r and A ⊆ G is so that |A + A| ≤ K |A|,
then A is contained in subgroup H of size |H| = Or ,K (|A|).

Conjecture (Ruzsa’s conjecture, ’99)

There is a constant C > 0 such that the following holds. If G is an abelian group
with exponent r and A ⊆ G is so that |A + A| ≤ K |A|, then A is contained in
subgroup H of size |H| ≤ rCK |A|.

Theorem (Gowers-Green-Manners-Tao, ’24)

If G is an abelian group with exponent r and A ⊆ G is so that |A + A| ≤ K |A|,
then there is a subgroup H with |H| ≤ KC |A| for which A is covered by KC

translates of H.
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Previous results

Ruzsa’s conjecture ’99

There is a constant C > 0 such that the following holds. If G is an abelian group
with exponent r and A ⊆ G is so that |A + A| ≤ K |A|, then A is contained in
subgroup H of size |H| ≤ rCK |A|.

Theorem (Ruzsa ’99)

We can find H ⊇ A with |H| ≤ K 2rK
4 |A|.

Theorem (Green-Ruzsa ’06)

We can find H ⊇ A with |H| ≤ K 2r2K 2−2|A|.

Theorem (Sanders ’12)

We can find H ⊇ A with |H| ≤ rK(log K)O(1) |A|.
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Previous results - The case of prime torsion

Ruzsa’s conjecture ’99

There is a constant C > 0 such that the following holds. If G is an abelian group
with exponent r and A ⊆ G is so that |A + A| ≤ K |A|, then A is contained in
subgroup H of size |H| ≤ rCK |A|.

Theorem (Green-Tao ’09)

For G = Fd
2 , we can find H ⊇ A with |H| ≤ 22K+O(

√
K log K)|A|.

Theorem (Even-Zohar ’12)

For G = Fd
2 , we can find H ⊇ A with |H| ≤ 22K

2K |A|.

Theorem (Even-Zohar – Lovett ’14)

For G = Fd
p , we can find H ⊇ A with |H| ≤ p2K−2

2K−1 |A|.
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Previous results

The techniques in previous work roughly come in two directions.

Analytic technique:

Fourier analysis (Bogolyubov-Ruzsa lemma), Covering lemma, Modelling
lemma, Plünnecke-Ruzsa inequality

Works in general abelian groups.

Compression technique over finite field vector spaces:

Perform local modifications (compressions) to reduce to explicit structured
examples.

Rely strongly on the vector space structure.

There are cases in which groups with exponent divisible by more than one prime
behave significantly different from those with prime power torsion!
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Main resuilts

Theorem (Fox-P. ’25+)

If G is an abelian group with exponent r and A ⊆ G is so that |A + A| ≤ K |A|,
then A is contained in subgroup H of size |H| ≤ r (2+o(1))K |A|.

In particular, Ruzsa’s conjecture holds.

Our key ingredient is the main combinatorial lemma producing expanding
structures inside sets with small doubling.
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The combinatorial setup & The key combinatorial lemma
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Combinatorial view on sets with small doubling

Additive input:

Abelian group G

Subset A ⊆ G with |A + A| ≤ K |A|.

Combinatorial picture:

Complete graph on G , with proper edge coloring c({x , y}) = x + y .

A set A with doubling K corresponds to a vertex subset whose induced
subgraph receives few colors under edge coloring c .

G = Z5

Surprise: Suffice to work in general combinatorial setup.

Complete graph (on A) with a proper edge coloring using at most K |A| many
colors.
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The key combinatorial lemma

Given an edge coloring of the complete graph, let N(A,B) denote the set of colors
between vertex sets A,B.

The key combinatorial lemma

Consider a proper edge coloring on A of size n using at most Kn colors, each
appearing O(n/K ) times. There exists a set of O(K ) colors S such that the edges
with colors in S partition A into sets Bi satisfying:

At least |A|/2 vertices of A are contained in the sets Bi .

Each Bi is connected using only edges with colors in S .

For any set Bi and any A′ ⊆ A with |A′| = Ω(n), N(Bi ,A
′) = Ω(Kn).
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Approach to Ruzsa’s conjecture

Step 1. Apply the key combinatorial lemma.

A′

Bi
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Approach to Ruzsa’s conjecture

Step 1. Apply the key combinatorial lemma.

Step 2. Let H denote the subgroup spanned by the colors in S . Deduce that

|A mod H + A mod H| ≤ Õ(1)|A mod H|.

A′

H

Bi

Step 3. Via qualitative version of Ruzsa’s theorem, deduce that A is contained in
a subgroup H with |H| ≤ |A| exp(O(K )).
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A′

H

Bi

Step 3. Via qualitative version of Ruzsa’s theorem, deduce that A is contained in
a subgroup H with |H| ≤ |A| exp(O(K )).

Huy Tuan Pham (Caltech) Additive combinatorics: Combinatorial perspective NZMRI - January 2026 22 / 46



Ramsey Cayley graphs, Dense Random Cayley graphs &

Sets with small doubling in general groups
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Ramsey graphs

Definition (Ramsey graphs)

A graph on N vertices is C-Ramsey if it has no clique or independent set of size
C log2 N.

Theorem (Erdős-Szekeres ’35)

There is no 1
2 -Ramsey graph.

Theorem (Campos-Griffiths-Morris-Sahasrabudhe ’23)

There is no ( 1
2 + c)-Ramsey graph.

Theorem (Erdős ’47)

Almost all graphs on N vertices are 2-Ramsey.
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Erdős’ remarkable proof

Theorem (Erdős ’47)

Almost all graphs on N vertices are 2-Ramsey.

One of the first applications of the probabilistic method.

Erdős shows that G (N, 1/2) does not have a clique or independent set of size
n = 2 log2 N by considering the first moment (expectation) obstruction:
The expected number of such cliques or independent sets is(
N
n

)
2−(n

2) = oN(1).

Problem (Erdős ’47)

Explicitly construct C -Ramsey graphs for some constant C .
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Ramsey Cayley graphs

Definition (Cayley graph)

For a group G and symmetric subset S ⊂ G , the Cayley graph GS has vertex set
G and distinct x , y are adjacent if xy−1 ∈ S .

Given p ∈ (0, 1), the random Cayley graphs G (p) is the Cayley graph GS where
each {g , g−1} is included independently in S with probability p.

G = Z2 × Z2
G = Z5
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Ramsey Cayley graphs

Definition (Cayley graph)

For a group G and symmetric subset S ⊂ G , the Cayley graph GS has vertex set
G and distinct x , y are adjacent if xy−1 ∈ S .

Given p ∈ (0, 1), the random Cayley graphs G (p) is the Cayley graph GS where
each {g , g−1} is included independently in S with probability p.

Motivations:

Small Ramsey graphs are Cayley; random analog of Paley graphs.

Extensively studied in applications in theoretical computer science,
combinatorics, number theory, group theory.

Strong connections to coding theory, spectral graph theory, etc.
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Ramsey Cayley graphs

Definition (Cayley graph)

For a group G and symmetric subset S ⊂ G , the Cayley graph GS has vertex set
G and distinct x , y are adjacent if xy−1 ∈ S .

Given p ∈ (0, 1), the random Cayley graphs G (p) is the Cayley graph GS where
each {g , g−1} is included independently in S with probability p.

Question

What is the size of the largest clique or independent set in uniform random Cayley
graphs G (1/2)? Are uniform random Cayley graphs Ramsey?

Conjecture (Alon ’89)

There is a constant C such that every finite group has a Cayley graph which is
C -Ramsey.
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Random graphs meet additive combinatorics

Connection to additive combinatorics and group theory:

For A ⊆ G , define the product set

AA−1 := {ab−1 : a, b ∈ A}.

In an abelian group, this is the difference set A− A.

A is an independent set in GS if and only if AA−1 \ {1G} ⊂ Sc .

The first moment of the number of independent sets in a random Cayley graph is
intimately related to the number of sets with small product sets:

E[#independent sets of size t in G (p)] =
∑
|A|=t

(1− p)Θ(|AA−1|).

Controlling the first moment of the number of independent sets in a random
Cayley graph reduces to bounding the number of sets with small product sets.
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Independence number of random Cayley graphs

Theorem (Alon ’95)

The independence number of a uniform random Cayley graph on any group G of
order N is O(log2 N) with high probability.

Theorem (Green ’05, Green-Morris ’16)

For N prime, the independence number of a uniform random Cayley graph on ZN

is (2 + o(1)) log2 N with high probability.

Theorem (Green ’05, Mrazović ’17)

The independence number of a uniform random Cayley graph on Fd
p with N = pd

is Θp(logN log logN) with high probability.
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Random graphs meet additive combinatorics

Theorem (Conlon-Fox-P.-Yepremyan ’24)

With high probability, the independence number of a uniform random Cayley
graph on any group G of order N is O(logN log logN).

Theorem (Conlon-Fox-P.-Yepremyan ’24)

In any group G of order N, the number of subsets A ⊂ G with |A| = n and
|AA−1| ≤ Kn is at most NC(K+log n)(CK )n.

In general, the above bound is sharp (up to the constant C ).

Sets A with small product sets AA−1 are structured in the statistical sense.

Our proof of the theorem is entirely combinatorial!
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Combinatorial view on Cayley graphs

Combinatorial view of the group structure:

Complete graph on G with an edge coloring c({x , y}) = {xy−1, yx−1}.
In this edge-coloring each color class is 1 or 2-regular.

A set A of size n with |AA−1| ≤ m corresponds to a vertex subset of size n
inducing at most m colors.

A Cayley graph on G is the edge-union of some color classes.

G = Z2 × Z2
G = Z5

Surprise: The combinatorial constraint on the degree of color classes is sufficient!
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Counting sets with small product set

Theorem 1 (Conlon-Fox-P.-Yepremyan ’24)

In a ∆-bounded edge-coloring of the complete graph on N vertices, the number of
n-vertex subsets with at most Kn colors is at most

NC∆(K+log n)(C∆K )n.

Lemma

For any vertex set of size n with a proper edge coloring using Kn colors, we can
find a tree with O(K + log n) colors on .99n vertices.

The lemma follows from the key combinatorial lemma.
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The key combinatorial lemma

The key combinatorial lemma

Consider a proper edge coloring on A of size n using at most Kn colors, each
appearing O(n/K ) times. There exists a set of O(K ) colors S such that the edges
with colors in S partition A into sets Bi satisfying:

At least |A|/2 vertices of A are contained in the sets Bi .

Each Bi is connected using only edges with colors in S .

For any set Bi and any A′ ⊆ A with |A′| = Ω(n), N(Bi ,A
′) = Ω(Kn).

A′

Bi
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Alon’s conjecture - Going beyond uniform random
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Alon’s conjecture

Conjecture (Alon ’89)

There is a constant C such that every finite group has a Cayley graph which is
C -Ramsey.
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Alon’s conjecture - Going beyond uniform random

Over Fd
p , a uniformly random Cayley graph is not Ramsey w.h.p.

We define an alternative distribution of random Cayley graphs to “remove” the
problematic cliques.

Theorem (Conlon-Fox-P.-Yepremyan ’24)

For p ≥ 5, there exists Cayley graphs over Fd
p with clique and independence

number (2 + o(1)) log2 N where N = pd .
For p = 1 (mod 4), these Cayley graphs are self-complementary.

Answer a question of Alon and Orlitsky (’95) motivated by zero-error capacity and

dual-source coding.

Theorem (Conlon-Fox-P.-Yepremyan ’24)

For almost all N, all abelian groups G of order N have a Cayley graph which is
C -Ramsey.

Recent generalization to all groups of order coprime to 6 by Schildkraut.
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Alon’s conjecture - Going beyond uniform random

Theorem (Conlon-Fox-P.-Yepremyan ’24)

There is a C -Ramsey self-complementary Cayley graph on Fd
5 .

Model. For each nonzero x ∈ Fd
5 , randomly pick exactly one of {x , 4x} or

{2x , 3x} to be a subset of the generating set S :

S is symmetric.

If x ∈ S , then 2x 6∈ S .

The second condition together with Plünnecke-Ruzsa inequality force any
potential clique A to have |A− A| ≥ |A|4/3.

The first moment over those A, together with the previous counting result, imply
the Ramsey property.
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Perspective

Cliques in dense random Cayley graphs ↔ Counting sets with small doubling.

Combinatorial perspective: Main combinatorial lemma identifies novel
combinatorial structures underlying sets with small doubling.

New combinatorial approach to additive combinatorics:
Main combinatorial lemma: expanding structures in sets with small doubling.
Refinement: Use expanding structures to probe information about the entire
set.

A′

Bi
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Perspective

A′

Bi

Perspective: Instead of zooming in on explicit structures inside the set, the
combinatorial lemma provides first a template that is “as random-like as possible”.

The proof follows from an intricate random exploration process.

Robust and applicable in wide generality.
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New direction: Dependent random graphs

The combinatorial approach to clique number of dense random Cayley graphs
suggests intriguing universal behaviors in general random graph models with
significant dependencies.

Consider an edge-coloring c of a complete graph, where each color class has
degree at most ∆.

Definition (Random entangled graph)

An entangled graph is the edge-union of some of the color classes.

The random entangled graph Gc(p) is formed by including each color class with
probability p independently.

Examples:

Erdős-Rényi random graphs.

Random Cayley graphs.

Random Latin square graphs: Color class Ck = {{i , j} : Lij = k} for a Latin
square L.
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New direction: Random entangled graphs

Theorem 1 (Conlon-Fox-P.-Yepremyan ’24)

In a ∆-bounded edge-coloring of the complete graph on N vertices, the number of
n-vertex subsets with at most Kn colors is at most

NC∆(K+log n)(C∆K )n.

Theorem 2 (Conlon-Fox-P.-Yepremyan ’24)

If an edge-coloring c of KN is ∆-bounded, then with high probability,

α(Gc(p)) = Op,∆(logN log logN).

From Theorem 1, a careful union bound yields Theorem 2.

Theorem 2 solves a conjecture of Christofides and Markström (’11) on the
independence number of random Latin square graphs.
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New direction: ∆-independent random graphs

How much independence is needed?

The phenomena extend to a significantly broader class of random graphs.

Definition (∆-independent graph)

An ensemble of random graphs is said to be ∆-independent if for each edge e,
there is a graph Ge of maximum degree ∆ such that the appearance of e is
independent of all edges outside Ge .

Significant weakening of usual condition in the Lovász Local Lemma!

All random entangled graphs defined by a ∆-bounded edge coloring are
∆-independent random graphs.

Theorem (Conlon-Fox-P.-Yepremyan ’26+)

Consider a ∆-independent random graph G where the probability of appearance
of each edge is Θ(p). Then, with high probability,

α(G ) = Op,∆(logN log logN).
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New direction: ∆-independent random graphs

Definition (∆-independent graph)

An ensemble of random graphs is said to be ∆-independent if for each edge e,
there is a graph Ge of maximum degree ∆ such that the appearance of e is
independent of all edges outside Ge .

Theorem (Conlon-Fox-P.-Yepremyan ’26+)

Consider a symmetric ∆-independent random graph G where the probability of
appearance of each edge is p. Then, with high probability, all nontrivial
eigenvalues of G are bounded by O(

√
pN logN).

As a corollary, we obtain that G is Hamiltonian with high probability for
p � logN.

Open direction

Study interesting properties of ∆-independent graphs (random entangled graphs,
random Cayley graphs).
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The next part

Probabilistic approach to sets with small doubling:

Study independent sets in sparse random Cayley graphs.

Via the connection between threshold phenomena and first moment
obstructions, probabilistic predictions suggest existence of significant
low-complexity structures among sets with small doubling.

New approach to probe low-complexity structures:

Progress on understanding sparse random Cayley graphs.
Much finer understanding of sets with small doubling, Optimal enumeration
results.
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Thank you!
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