

# Groupoids in Operator Algebra and Abstract Algebra: Part 2

NZMRI Conference, Napier  
14<sup>th</sup> January 2026

Becky Armstrong



VICTORIA UNIVERSITY OF  
**WELLINGTON**  
TE HERENGĀ WAKA

# Groupoidology

## Groupoids

A **groupoid**  $\mathcal{G}$  is a small category in which every morphism  $\gamma$  has a unique inverse  $\gamma^{-1}$ .

## Groupoids

A **groupoid**  $\mathcal{G}$  is a small category in which every morphism  $\gamma$  has a unique inverse  $\gamma^{-1}$ .

Each  $\gamma \in \mathcal{G}$  has a **range**  $r(\gamma) = \gamma\gamma^{-1}$  and a **source**  $s(\gamma) = \gamma^{-1}\gamma$ .

## Groupoids

A **groupoid**  $\mathcal{G}$  is a small category in which every morphism  $\gamma$  has a unique inverse  $\gamma^{-1}$ .

Each  $\gamma \in \mathcal{G}$  has a **range**  $\mathbf{r}(\gamma) = \gamma\gamma^{-1}$  and a **source**  $\mathbf{s}(\gamma) = \gamma^{-1}\gamma$ .

Composition  $(\alpha, \beta) \mapsto \alpha\beta$  is only defined on the set of **composable pairs**

$$\mathcal{G}^{(2)} = \{(\alpha, \beta) \in \mathcal{G} \times \mathcal{G} \mid \mathbf{s}(\alpha) = \mathbf{r}(\beta)\} \subseteq \mathcal{G} \times \mathcal{G}.$$

## Groupoids

A **groupoid**  $\mathcal{G}$  is a small category in which every morphism  $\gamma$  has a unique inverse  $\gamma^{-1}$ .

Each  $\gamma \in \mathcal{G}$  has a **range**  $\mathbf{r}(\gamma) = \gamma\gamma^{-1}$  and a **source**  $\mathbf{s}(\gamma) = \gamma^{-1}\gamma$ .

Composition  $(\alpha, \beta) \mapsto \alpha\beta$  is only defined on the set of **composable pairs**

$$\mathcal{G}^{(2)} = \{(\alpha, \beta) \in \mathcal{G} \times \mathcal{G} \mid \mathbf{s}(\alpha) = \mathbf{r}(\beta)\} \subseteq \mathcal{G} \times \mathcal{G}.$$

The elements of the **unit space**  $\mathcal{G}^{(0)} = \mathbf{r}(\mathcal{G}) = \mathbf{s}(\mathcal{G})$  behave like identities wherever composition is defined.

## Groupoids

A **groupoid**  $\mathcal{G}$  is a small category in which every morphism  $\gamma$  has a unique inverse  $\gamma^{-1}$ .

Each  $\gamma \in \mathcal{G}$  has a **range**  $\mathbf{r}(\gamma) = \gamma\gamma^{-1}$  and a **source**  $\mathbf{s}(\gamma) = \gamma^{-1}\gamma$ .

Composition  $(\alpha, \beta) \mapsto \alpha\beta$  is only defined on the set of **composable pairs**

$$\mathcal{G}^{(2)} = \{(\alpha, \beta) \in \mathcal{G} \times \mathcal{G} \mid \mathbf{s}(\alpha) = \mathbf{r}(\beta)\} \subseteq \mathcal{G} \times \mathcal{G}.$$

The elements of the **unit space**  $\mathcal{G}^{(0)} = \mathbf{r}(\mathcal{G}) = \mathbf{s}(\mathcal{G})$  behave like identities wherever composition is defined.

**Examples:** Groups, equivalence relations, group actions, directed graph groupoids, etc.

## Topological groupoids

We call a groupoid  $\mathcal{G}$  a **topological groupoid** if it has a topology with respect to which multiplication and inversion are continuous.

## Topological groupoids

We call a groupoid  $\mathcal{G}$  a **topological groupoid** if it has a topology with respect to which multiplication and inversion are continuous.

Let  $\mathcal{G}$  be a **locally compact Hausdorff** groupoid.

## Topological groupoids

We call a groupoid  $\mathcal{G}$  a **topological groupoid** if it has a topology with respect to which multiplication and inversion are continuous.

Let  $\mathcal{G}$  be a **locally compact Hausdorff** groupoid. We call an open subset  $B$  of  $\mathcal{G}$  an **open bisection** if  $r|_B$  and  $s|_B$  are homeomorphisms onto open subsets of  $\mathcal{G}$ .

## Topological groupoids

We call a groupoid  $\mathcal{G}$  a **topological groupoid** if it has a topology with respect to which multiplication and inversion are continuous.

Let  $\mathcal{G}$  be a **locally compact Hausdorff** groupoid. We call an open subset  $B$  of  $\mathcal{G}$  an **open bisection** if  $r|_B$  and  $s|_B$  are homeomorphisms onto open subsets of  $\mathcal{G}$ .

We say that  $\mathcal{G}$  is **étale** if it has a **basis of open bisections**.

## Topological groupoids

We call a groupoid  $\mathcal{G}$  a **topological groupoid** if it has a topology with respect to which multiplication and inversion are continuous.

Let  $\mathcal{G}$  be a **locally compact Hausdorff** groupoid. We call an open subset  $B$  of  $\mathcal{G}$  an **open bisection** if  $r|_B$  and  $s|_B$  are homeomorphisms onto open subsets of  $\mathcal{G}$ .

We say that  $\mathcal{G}$  is **étale** if it has a **basis of open bisections**. Every Hausdorff étale groupoid  $\mathcal{G}$  has a **full  $C^*$ -algebra**  $C^*(\mathcal{G})$  and a **reduced  $C^*$ -algebra**  $C_r^*(\mathcal{G})$ .

## Topological groupoids

We call a groupoid  $\mathcal{G}$  a **topological groupoid** if it has a topology with respect to which multiplication and inversion are continuous.

Let  $\mathcal{G}$  be a **locally compact Hausdorff** groupoid. We call an open subset  $B$  of  $\mathcal{G}$  an **open bisection** if  $r|_B$  and  $s|_B$  are homeomorphisms onto open subsets of  $\mathcal{G}$ .

We say that  $\mathcal{G}$  is **étale** if it has a **basis of open bisections**. Every Hausdorff étale groupoid  $\mathcal{G}$  has a **full  $C^*$ -algebra**  $C^*(\mathcal{G})$  and a **reduced  $C^*$ -algebra**  $C_r^*(\mathcal{G})$ .

We say that  $\mathcal{G}$  is **ample** if it has a **basis of compact open bisections** (called “cobs”).

## Topological groupoids

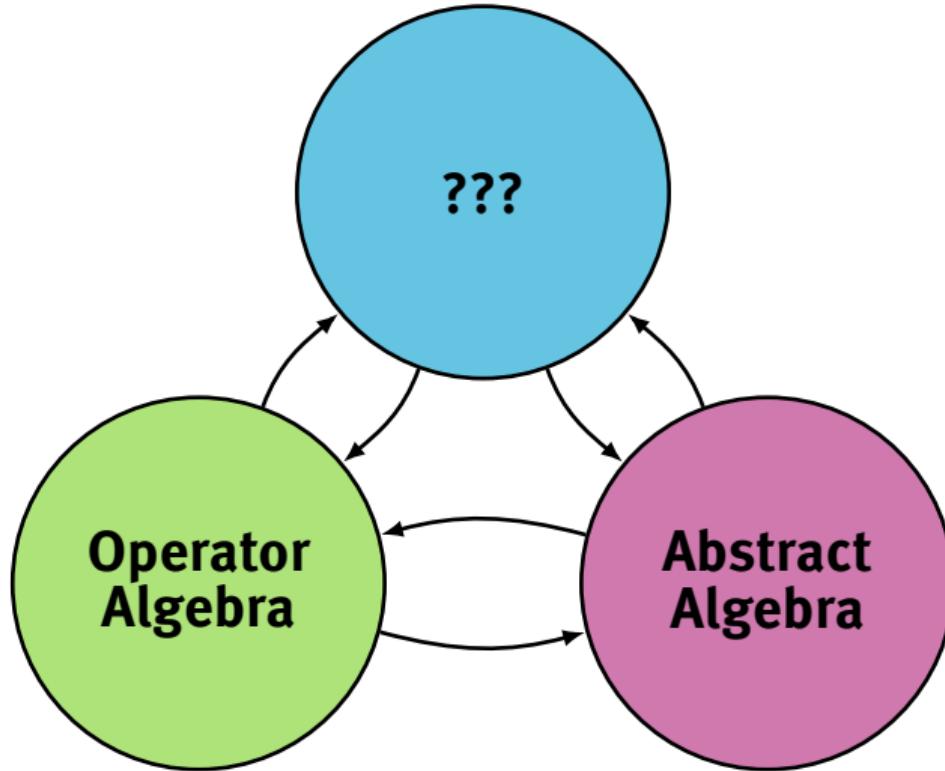
We call a groupoid  $\mathcal{G}$  a **topological groupoid** if it has a topology with respect to which multiplication and inversion are continuous.

Let  $\mathcal{G}$  be a **locally compact Hausdorff** groupoid. We call an open subset  $B$  of  $\mathcal{G}$  an **open bisection** if  $r|_B$  and  $s|_B$  are homeomorphisms onto open subsets of  $\mathcal{G}$ .

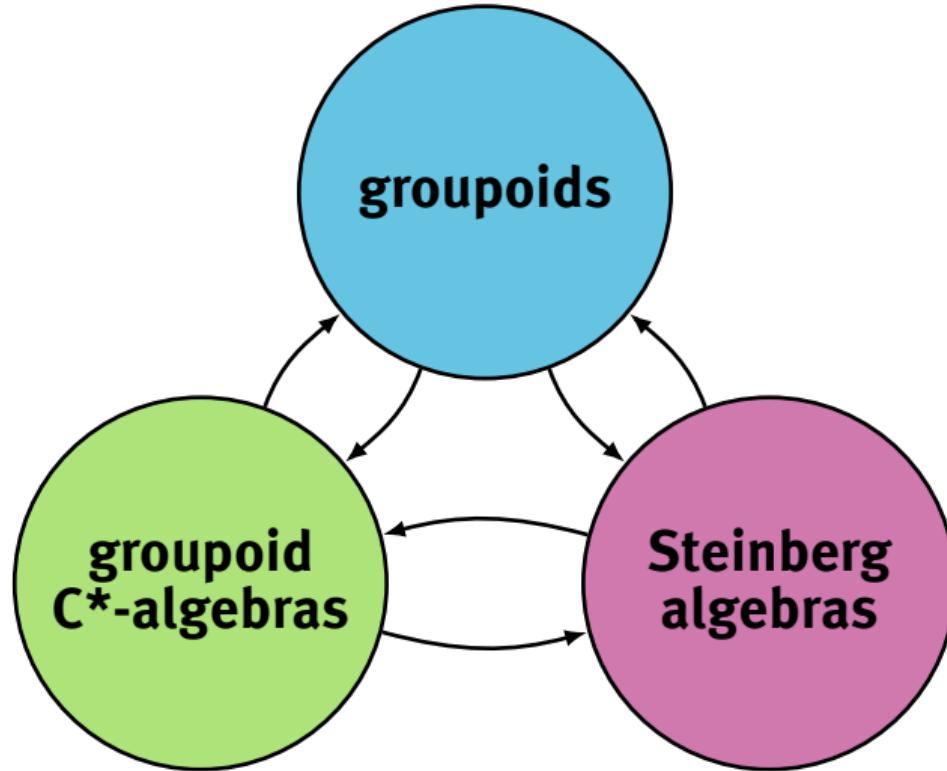
We say that  $\mathcal{G}$  is **étale** if it has a **basis of open bisections**. Every Hausdorff étale groupoid  $\mathcal{G}$  has a **full  $C^*$ -algebra**  $C^*(\mathcal{G})$  and a **reduced  $C^*$ -algebra**  $C_r^*(\mathcal{G})$ .

We say that  $\mathcal{G}$  is **ample** if it has a **basis of compact open bisections** (called “cobs”). Given any ample Hausdorff groupoid  $\mathcal{G}$  and commutative unital ring  $R$ , there is an associated **Steinberg algebra**  $A_R(\mathcal{G})$ .

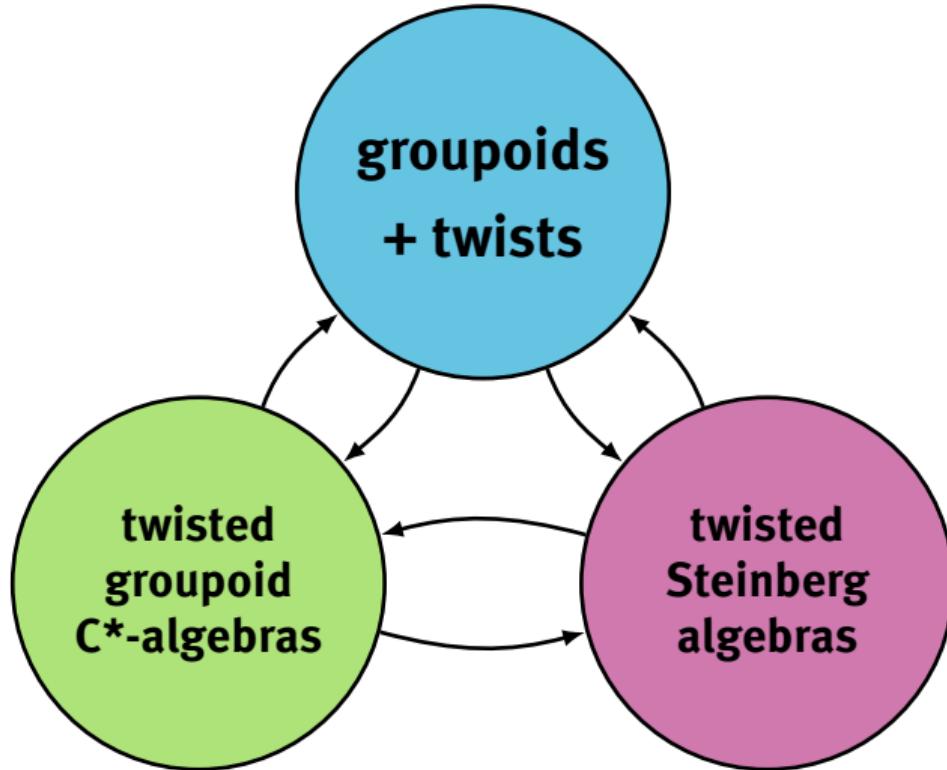
## My research



## My research



## My research: twisted groupoid algebras



# Structure Theory



## Simplicity of $*$ -algebras and of $C^*$ -algebras

Simplicity and various other properties of  $C^*$ -algebras play an important role in  $C^*$ -algebraic classification theory.

## Simplicity of $*$ -algebras and of $C^*$ -algebras

Simplicity and various other properties of  $C^*$ -algebras play an important role in  $C^*$ -algebraic classification theory. Simple  $*$ -algebras and  $C^*$ -algebras are the “building blocks” of more complicated ones.

## Simplicity of $*$ -algebras and of $C^*$ -algebras

Simplicity and various other properties of  $C^*$ -algebras play an important role in  $C^*$ -algebraic classification theory. Simple  $*$ -algebras and  $C^*$ -algebras are the “building blocks” of more complicated ones.

### Definition

Let  $A$  be a  $*$ -algebra.

## Simplicity of $*$ -algebras and of $C^*$ -algebras

Simplicity and various other properties of  $C^*$ -algebras play an important role in  $C^*$ -algebraic classification theory. Simple  $*$ -algebras and  $C^*$ -algebras are the “building blocks” of more complicated ones.

### Definition

Let  $A$  be a  $*$ -algebra. An **ideal**  $I$  of  $A$  is a  $*$ -subalgebra such that  $ax, xa \in I$  for all  $a \in A$  and  $x \in I$ .

## Simplicity of $*$ -algebras and of $C^*$ -algebras

Simplicity and various other properties of  $C^*$ -algebras play an important role in  $C^*$ -algebraic classification theory. Simple  $*$ -algebras and  $C^*$ -algebras are the “building blocks” of more complicated ones.

### Definition

Let  $A$  be a  $*$ -algebra. An **ideal**  $I$  of  $A$  is a  $*$ -subalgebra such that  $ax, xa \in I$  for all  $a \in A$  and  $x \in I$ . We require ideals in a  $C^*$ -algebra to additionally be closed in norm.

## Simplicity of $*$ -algebras and of $C^*$ -algebras

Simplicity and various other properties of  $C^*$ -algebras play an important role in  $C^*$ -algebraic classification theory. Simple  $*$ -algebras and  $C^*$ -algebras are the “building blocks” of more complicated ones.

### Definition

Let  $A$  be a  $*$ -algebra. An **ideal**  $I$  of  $A$  is a  $*$ -subalgebra such that  $ax, xa \in I$  for all  $a \in A$  and  $x \in I$ . We require ideals in a  $C^*$ -algebra to additionally be closed in norm.

**Question:** How can we tell whether a given groupoid  $C^*$ -algebra or Steinberg algebra is simple?

# Simplicity of Steinberg algebras and groupoid $C^*$ -algebras

## Definition

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

# Simplicity of Steinberg algebras and groupoid $C^*$ -algebras

## Definition

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

- The **isotropy** of  $\mathcal{G}$  is the subgroupoid  $\text{Iso}(\mathcal{G}) := \{\gamma \in \mathcal{G} : \mathbf{r}(\gamma) = \mathbf{s}(\gamma)\}$ .

# Simplicity of Steinberg algebras and groupoid $C^*$ -algebras

## Definition

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

- The **isotropy** of  $\mathcal{G}$  is the subgroupoid  $\text{Iso}(\mathcal{G}) := \{\gamma \in \mathcal{G} : \mathbf{r}(\gamma) = \mathbf{s}(\gamma)\}$ .
- Let  $\mathcal{I}$  denote the topological interior of  $\text{Iso}(\mathcal{G})$ .

# Simplicity of Steinberg algebras and groupoid $C^*$ -algebras

## Definition

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

- The **isotropy** of  $\mathcal{G}$  is the subgroupoid  $\text{Iso}(\mathcal{G}) := \{\gamma \in \mathcal{G} : \mathbf{r}(\gamma) = \mathbf{s}(\gamma)\}$ .
- Let  $\mathcal{I}$  denote the topological interior of  $\text{Iso}(\mathcal{G})$ . We say that  $\mathcal{G}$  is **effective** if  $\mathcal{I} = \mathcal{G}^{(0)}$ .

# Simplicity of Steinberg algebras and groupoid $C^*$ -algebras

## Definition

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

- The **isotropy** of  $\mathcal{G}$  is the subgroupoid  $\text{Iso}(\mathcal{G}) := \{\gamma \in \mathcal{G} : \mathbf{r}(\gamma) = \mathbf{s}(\gamma)\}$ .
- Let  $\mathcal{I}$  denote the topological interior of  $\text{Iso}(\mathcal{G})$ . We say that  $\mathcal{G}$  is **effective** if  $\mathcal{I} = \mathcal{G}^{(0)}$ . In particular, nontrivial discrete groups are never effective.

# Simplicity of Steinberg algebras and groupoid $C^*$ -algebras

## Definition

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

- The **isotropy** of  $\mathcal{G}$  is the subgroupoid  $\text{Iso}(\mathcal{G}) := \{\gamma \in \mathcal{G} : \mathbf{r}(\gamma) = \mathbf{s}(\gamma)\}$ .
- Let  $\mathcal{I}$  denote the topological interior of  $\text{Iso}(\mathcal{G})$ . We say that  $\mathcal{G}$  is **effective** if  $\mathcal{I} = \mathcal{G}^{(0)}$ . In particular, nontrivial discrete groups are never effective.
- We say that  $\mathcal{G}$  is **minimal** if  $\mathbf{r}(\mathbf{s}^{-1}(x))$  is dense in  $\mathcal{G}^{(0)}$  for each  $x \in \mathcal{G}^{(0)}$ .

# Simplicity of Steinberg algebras and groupoid $C^*$ -algebras

## Definition

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

- The **isotropy** of  $\mathcal{G}$  is the subgroupoid  $\text{Iso}(\mathcal{G}) := \{\gamma \in \mathcal{G} : \mathbf{r}(\gamma) = \mathbf{s}(\gamma)\}$ .
- Let  $\mathcal{I}$  denote the topological interior of  $\text{Iso}(\mathcal{G})$ . We say that  $\mathcal{G}$  is **effective** if  $\mathcal{I} = \mathcal{G}^{(0)}$ . In particular, nontrivial discrete groups are never effective.
- We say that  $\mathcal{G}$  is **minimal** if  $\mathbf{r}(\mathbf{s}^{-1}(x))$  is dense in  $\mathcal{G}^{(0)}$  for each  $x \in \mathcal{G}^{(0)}$ .

## Theorem (Brown–Clark–Farthing–Sims 2014)

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

# Simplicity of Steinberg algebras and groupoid $C^*$ -algebras

## Definition

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

- The **isotropy** of  $\mathcal{G}$  is the subgroupoid  $\text{Iso}(\mathcal{G}) := \{\gamma \in \mathcal{G} : \mathbf{r}(\gamma) = \mathbf{s}(\gamma)\}$ .
- Let  $\mathcal{I}$  denote the topological interior of  $\text{Iso}(\mathcal{G})$ . We say that  $\mathcal{G}$  is **effective** if  $\mathcal{I} = \mathcal{G}^{(0)}$ . In particular, nontrivial discrete groups are never effective.
- We say that  $\mathcal{G}$  is **minimal** if  $\mathbf{r}(\mathbf{s}^{-1}(x))$  is dense in  $\mathcal{G}^{(0)}$  for each  $x \in \mathcal{G}^{(0)}$ .

## Theorem (Brown–Clark–Farthing–Sims 2014)

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

- (a) If  $\mathcal{G}$  is ample, then  $A_{\mathbb{C}_d}(\mathcal{G})$  is simple if and only if  $\mathcal{G}$  is minimal and effective.

# Simplicity of Steinberg algebras and groupoid $C^*$ -algebras

## Definition

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

- The **isotropy** of  $\mathcal{G}$  is the subgroupoid  $\text{Iso}(\mathcal{G}) := \{\gamma \in \mathcal{G} : \mathbf{r}(\gamma) = \mathbf{s}(\gamma)\}$ .
- Let  $\mathcal{I}$  denote the topological interior of  $\text{Iso}(\mathcal{G})$ . We say that  $\mathcal{G}$  is **effective** if  $\mathcal{I} = \mathcal{G}^{(0)}$ . In particular, nontrivial discrete groups are never effective.
- We say that  $\mathcal{G}$  is **minimal** if  $\mathbf{r}(\mathbf{s}^{-1}(x))$  is dense in  $\mathcal{G}^{(0)}$  for each  $x \in \mathcal{G}^{(0)}$ .

## Theorem (Brown–Clark–Farthing–Sims 2014)

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

- If  $\mathcal{G}$  is ample, then  $A_{\mathbb{C}_d}(\mathcal{G})$  is simple if and only if  $\mathcal{G}$  is minimal and effective.
- If  $\mathcal{G}$  is second-countable and amenable, then  $C^*(\mathcal{G})$  is simple if and only if  $\mathcal{G}$  is minimal and effective.

## Continuous 2-cocycles and twisted groupoid $C^*$ -algebras

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

## Continuous 2-cocycles and twisted groupoid $C^*$ -algebras

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

### Definition

A **continuous 2-cocycle** on  $\mathcal{G}$  is a continuous map  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  such that

# Continuous 2-cocycles and twisted groupoid $C^*$ -algebras

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

## Definition

A **continuous 2-cocycle** on  $\mathcal{G}$  is a continuous map  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  such that

- (a)  $\sigma(\alpha, \beta) \sigma(\alpha\beta, \gamma) = \sigma(\alpha, \beta\gamma) \sigma(\beta, \gamma)$  for all composable morphisms  $\alpha, \beta, \gamma \in \mathcal{G}$ ; and

# Continuous 2-cocycles and twisted groupoid $C^*$ -algebras

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

## Definition

A **continuous 2-cocycle** on  $\mathcal{G}$  is a continuous map  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  such that

- (a)  $\sigma(\alpha, \beta) \sigma(\alpha\beta, \gamma) = \sigma(\alpha, \beta\gamma) \sigma(\beta, \gamma)$  for all composable morphisms  $\alpha, \beta, \gamma \in \mathcal{G}$ ; and
- (b)  $\sigma(r(\gamma), \gamma) = \sigma(\gamma, s(\gamma)) = 1$  for all  $\gamma \in \mathcal{G}$ .

# Continuous 2-cocycles and twisted groupoid $C^*$ -algebras

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

## Definition

A **continuous 2-cocycle** on  $\mathcal{G}$  is a continuous map  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  such that

- (a)  $\sigma(\alpha, \beta) \sigma(\alpha\beta, \gamma) = \sigma(\alpha, \beta\gamma) \sigma(\beta, \gamma)$  for all composable morphisms  $\alpha, \beta, \gamma \in \mathcal{G}$ ; and
- (b)  $\sigma(r(\gamma), \gamma) = \sigma(\gamma, s(\gamma)) = 1$  for all  $\gamma \in \mathcal{G}$ .

Let  $C_c(\mathcal{G}, \sigma)$  be the vector space  $C_c(\mathcal{G})$

# Continuous 2-cocycles and twisted groupoid $C^*$ -algebras

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

## Definition

A **continuous 2-cocycle** on  $\mathcal{G}$  is a continuous map  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  such that

- (a)  $\sigma(\alpha, \beta) \sigma(\alpha\beta, \gamma) = \sigma(\alpha, \beta\gamma) \sigma(\beta, \gamma)$  for all composable morphisms  $\alpha, \beta, \gamma \in \mathcal{G}$ ; and
- (b)  $\sigma(r(\gamma), \gamma) = \sigma(\gamma, s(\gamma)) = 1$  for all  $\gamma \in \mathcal{G}$ .

Let  $C_c(\mathcal{G}, \sigma)$  be the vector space  $C_c(\mathcal{G})$  with convolution product and involution given by

$$(f * g)(\alpha) := \sum_{\beta \in r(\alpha)\mathcal{G}} \sigma(\beta, \beta^{-1}\alpha) f(\beta) g(\beta^{-1}\alpha) \quad \text{and} \quad f^*(\alpha) := \overline{\sigma(\alpha, \alpha^{-1})} \overline{f(\alpha^{-1})}.$$

## Continuous 2-cocycles and twisted groupoid $C^*$ -algebras

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

### Definition

A **continuous 2-cocycle** on  $\mathcal{G}$  is a continuous map  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  such that

- (a)  $\sigma(\alpha, \beta) \sigma(\alpha\beta, \gamma) = \sigma(\alpha, \beta\gamma) \sigma(\beta, \gamma)$  for all composable morphisms  $\alpha, \beta, \gamma \in \mathcal{G}$ ; and
- (b)  $\sigma(r(\gamma), \gamma) = \sigma(\gamma, s(\gamma)) = 1$  for all  $\gamma \in \mathcal{G}$ .

Let  $C_c(\mathcal{G}, \sigma)$  be the vector space  $C_c(\mathcal{G})$  with convolution product and involution given by

$$(f * g)(\alpha) := \sum_{\beta \in r(\alpha)\mathcal{G}} \sigma(\beta, \beta^{-1}\alpha) f(\beta) g(\beta^{-1}\alpha) \quad \text{and} \quad f^*(\alpha) := \overline{\sigma(\alpha, \alpha^{-1})} \overline{f(\alpha^{-1})}.$$

Then  $C_c(\mathcal{G}, \sigma)$  is a  $*$ -algebra.

## Continuous 2-cocycles and twisted groupoid $C^*$ -algebras

Let  $\mathcal{G}$  be a Hausdorff étale groupoid.

### Definition

A **continuous 2-cocycle** on  $\mathcal{G}$  is a continuous map  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  such that

- (a)  $\sigma(\alpha, \beta) \sigma(\alpha\beta, \gamma) = \sigma(\alpha, \beta\gamma) \sigma(\beta, \gamma)$  for all composable morphisms  $\alpha, \beta, \gamma \in \mathcal{G}$ ; and
- (b)  $\sigma(r(\gamma), \gamma) = \sigma(\gamma, s(\gamma)) = 1$  for all  $\gamma \in \mathcal{G}$ .

Let  $C_c(\mathcal{G}, \sigma)$  be the vector space  $C_c(\mathcal{G})$  with convolution product and involution given by

$$(f * g)(\alpha) := \sum_{\beta \in r(\alpha)\mathcal{G}} \sigma(\beta, \beta^{-1}\alpha) f(\beta) g(\beta^{-1}\alpha) \quad \text{and} \quad f^*(\alpha) := \overline{\sigma(\alpha, \alpha^{-1})} \overline{f(\alpha^{-1})}.$$

Then  $C_c(\mathcal{G}, \sigma)$  is a  $*$ -algebra. We complete  $C_c(\mathcal{G}, \sigma)$  with respect to full and reduced norms defined analogously to the non-twisted setting to obtain the **full** and **reduced twisted groupoid  $C^*$ -algebras**  $C^*(\mathcal{G}, \sigma)$  and  $C_r^*(\mathcal{G}, \sigma)$ , respectively.

## Twisted C\*-algebras of non-minimal groupoids

Let  $\mathcal{G}$  be a **non-minimal** Hausdorff étale groupoid, and let  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle.

## Twisted C\*-algebras of non-minimal groupoids

Let  $\mathcal{G}$  be a **non-minimal** Hausdorff étale groupoid, and let  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle.

Then there is a nonempty proper open subset  $U \subseteq \mathcal{G}^{(0)}$  such that  $r(s^{-1}(U)) \subseteq U$ .

## Twisted $C^*$ -algebras of non-minimal groupoids

Let  $\mathcal{G}$  be a **non-minimal** Hausdorff étale groupoid, and let  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle.

Then there is a nonempty proper open subset  $U \subseteq \mathcal{G}^{(0)}$  such that  $r(s^{-1}(U)) \subseteq U$ .

It follows that  $\mathcal{G}_U := \{\gamma \in \mathcal{G} : s(\gamma) \in U\}$  is a groupoid with unit space  $U$

## Twisted $C^*$ -algebras of non-minimal groupoids

Let  $\mathcal{G}$  be a **non-minimal** Hausdorff étale groupoid, and let  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle.

Then there is a nonempty proper open subset  $U \subseteq \mathcal{G}^{(0)}$  such that  $r(s^{-1}(U)) \subseteq U$ .

It follows that  $\mathcal{G}_U := \{\gamma \in \mathcal{G} : s(\gamma) \in U\}$  is a groupoid with unit space  $U$ , and  $C_r^*(\mathcal{G}_U, \sigma)$  is a nontrivial ideal of  $C_r^*(\mathcal{G}, \sigma)$ .

## Twisted C\*-algebras of non-minimal groupoids

Let  $\mathcal{G}$  be a **non-minimal** Hausdorff étale groupoid, and let  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle.

Then there is a nonempty proper open subset  $U \subseteq \mathcal{G}^{(0)}$  such that  $r(s^{-1}(U)) \subseteq U$ .

It follows that  $\mathcal{G}_U := \{\gamma \in \mathcal{G} : s(\gamma) \in U\}$  is a groupoid with unit space  $U$ , and  $C_r^*(\mathcal{G}_U, \sigma)$  is a nontrivial ideal of  $C_r^*(\mathcal{G}, \sigma)$ .

So C\*-algebras of non-minimal groupoids are *never* simple.

## Twisted C\*-algebras of non-minimal groupoids

Let  $\mathcal{G}$  be a **non-minimal** Hausdorff étale groupoid, and let  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle.

Then there is a nonempty proper open subset  $U \subseteq \mathcal{G}^{(0)}$  such that  $r(s^{-1}(U)) \subseteq U$ .

It follows that  $\mathcal{G}_U := \{\gamma \in \mathcal{G} : s(\gamma) \in U\}$  is a groupoid with unit space  $U$ , and  $C_r^*(\mathcal{G}_U, \sigma)$  is a nontrivial ideal of  $C_r^*(\mathcal{G}, \sigma)$ .

So C\*-algebras of non-minimal groupoids are *never* simple. What about C\*-algebras of **minimal** groupoids?

## Twisted $C^*$ -algebras of non-minimal groupoids

Let  $\mathcal{G}$  be a **non-minimal** Hausdorff étale groupoid, and let  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle.

Then there is a nonempty proper open subset  $U \subseteq \mathcal{G}^{(0)}$  such that  $r(s^{-1}(U)) \subseteq U$ .

It follows that  $\mathcal{G}_U := \{\gamma \in \mathcal{G} : s(\gamma) \in U\}$  is a groupoid with unit space  $U$ , and  $C_r^*(\mathcal{G}_U, \sigma)$  is a nontrivial ideal of  $C_r^*(\mathcal{G}, \sigma)$ .

So  $C^*$ -algebras of non-minimal groupoids are *never* simple. What about  $C^*$ -algebras of **minimal** groupoids?

If  $\mathcal{G}$  is effective, then  $C_r^*(\mathcal{G}, \sigma)$  is simple if and only if  $\mathcal{G}$  is minimal [A 2022].

## Twisted $C^*$ -algebras of non-minimal groupoids

Let  $\mathcal{G}$  be a **non-minimal** Hausdorff étale groupoid, and let  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle.

Then there is a nonempty proper open subset  $U \subseteq \mathcal{G}^{(0)}$  such that  $r(s^{-1}(U)) \subseteq U$ .

It follows that  $\mathcal{G}_U := \{\gamma \in \mathcal{G} : s(\gamma) \in U\}$  is a groupoid with unit space  $U$ , and  $C_r^*(\mathcal{G}_U, \sigma)$  is a nontrivial ideal of  $C_r^*(\mathcal{G}, \sigma)$ .

So  $C^*$ -algebras of non-minimal groupoids are *never* simple. What about  $C^*$ -algebras of **minimal** groupoids?

If  $\mathcal{G}$  is effective, then  $C_r^*(\mathcal{G}, \sigma)$  is simple if and only if  $\mathcal{G}$  is minimal [A 2022].

**Open question:** What happens if  $\mathcal{G}$  is minimal and not effective?

# The irrational rotation algebra

## The irrational rotation algebra

The group(oid)  $\mathbb{Z}^2$  is amenable and minimal, but not effective.

## The irrational rotation algebra

The group(oid)  $\mathbb{Z}^2$  is amenable and minimal, but not effective. Thus the group(oid)  $C^*$ -algebra  $C^*(\mathbb{Z}^2)$  is *not* simple.

## The irrational rotation algebra

The group(oid)  $\mathbb{Z}^2$  is amenable and minimal, but not effective. Thus the group(oid)  $C^*$ -algebra  $C^*(\mathbb{Z}^2)$  is *not* simple.

Fix  $\theta \in (0, 1) \setminus \mathbb{Q}$ , and let  $\sigma_\theta: \mathbb{Z}^2 \times \mathbb{Z}^2 \rightarrow \mathbb{T}$  be the 2-cocycle given by

$$\sigma_\theta((m, n), (p, q)) := e^{2np\theta\pi i}.$$

## The irrational rotation algebra

The group(oid)  $\mathbb{Z}^2$  is amenable and minimal, but not effective. Thus the group(oid)  $C^*$ -algebra  $C^*(\mathbb{Z}^2)$  is *not* simple.

Fix  $\theta \in (0, 1) \setminus \mathbb{Q}$ , and let  $\sigma_\theta: \mathbb{Z}^2 \times \mathbb{Z}^2 \rightarrow \mathbb{T}$  be the 2-cocycle given by

$$\sigma_\theta((m, n), (p, q)) := e^{2np\theta\pi i}.$$

The twisted group(oid)  $C^*$ -algebra  $C^*(\mathbb{Z}^2, \sigma_\theta)$  is the irrational rotation algebra  $\mathcal{A}_\theta$ , which is known to be simple!

## The irrational rotation algebra

The group(oid)  $\mathbb{Z}^2$  is amenable and minimal, but not effective. Thus the group(oid)  $C^*$ -algebra  $C^*(\mathbb{Z}^2)$  is *not* simple.

Fix  $\theta \in (0, 1) \setminus \mathbb{Q}$ , and let  $\sigma_\theta: \mathbb{Z}^2 \times \mathbb{Z}^2 \rightarrow \mathbb{T}$  be the 2-cocycle given by

$$\sigma_\theta((m, n), (p, q)) := e^{2np\theta\pi i}.$$

The twisted group(oid)  $C^*$ -algebra  $C^*(\mathbb{Z}^2, \sigma_\theta)$  is the irrational rotation algebra  $\mathcal{A}_\theta$ , which is known to be simple! (This is despite  $\mathbb{Z}^2$  not being effective.)

## The irrational rotation algebra

The group(oid)  $\mathbb{Z}^2$  is amenable and minimal, but not effective. Thus the group(oid)  $C^*$ -algebra  $C^*(\mathbb{Z}^2)$  is *not* simple.

Fix  $\theta \in (0, 1) \setminus \mathbb{Q}$ , and let  $\sigma_\theta: \mathbb{Z}^2 \times \mathbb{Z}^2 \rightarrow \mathbb{T}$  be the 2-cocycle given by

$$\sigma_\theta((m, n), (p, q)) := e^{2np\theta\pi i}.$$

The twisted group(oid)  $C^*$ -algebra  $C^*(\mathbb{Z}^2, \sigma_\theta)$  is the irrational rotation algebra  $\mathcal{A}_\theta$ , which is known to be simple! (This is despite  $\mathbb{Z}^2$  not being effective.)

So we need a different simplicity characterisation for twisted groupoid  $C^*$ -algebras.

## Deaconu–Renault groupoids: algebraic structure

Fix  $k \in \mathbb{N} \setminus \{0\}$ .

## Deaconu–Renault groupoids: algebraic structure

Fix  $k \in \mathbb{N} \setminus \{0\}$ . Let  $X$  be a locally compact Hausdorff space

## Deaconu–Renault groupoids: algebraic structure

Fix  $k \in \mathbb{N} \setminus \{0\}$ . Let  $X$  be a locally compact Hausdorff space, and let  $T: \mathbb{N} \mapsto T^n$  be an action of  $\mathbb{N}^k$  on  $X$  by local homeomorphisms.

## Deaconu–Renault groupoids: algebraic structure

Fix  $k \in \mathbb{N} \setminus \{0\}$ . Let  $X$  be a locally compact Hausdorff space, and let  $T: \mathbb{N} \mapsto T^n$  be an action of  $\mathbb{N}^k$  on  $X$  by local homeomorphisms.

Define sets

$$\mathcal{G}_T := \{(x, m - n, y) \in X \times \mathbb{Z}^k \times X : m, n \in \mathbb{N}^k, T^m(x) = T^n(y)\},$$

## Deaconu–Renault groupoids: algebraic structure

Fix  $k \in \mathbb{N} \setminus \{0\}$ . Let  $X$  be a locally compact Hausdorff space, and let  $T: \mathbb{N} \mapsto T^n$  be an action of  $\mathbb{N}^k$  on  $X$  by local homeomorphisms.

Define sets

$$\mathcal{G}_T := \{(x, m - n, y) \in X \times \mathbb{Z}^k \times X : m, n \in \mathbb{N}^k, T^m(x) = T^n(y)\},$$

and

$$\mathcal{G}_T^{(2)} := \{((x, m, y), (w, n, z)) \in \mathcal{G}_T \times \mathcal{G}_T : y = w\}.$$

## Deaconu–Renault groupoids: algebraic structure

Fix  $k \in \mathbb{N} \setminus \{0\}$ . Let  $X$  be a locally compact Hausdorff space, and let  $T: \mathbb{N} \mapsto T^n$  be an action of  $\mathbb{N}^k$  on  $X$  by local homeomorphisms.

Define sets

$$\mathcal{G}_T := \{(x, m - n, y) \in X \times \mathbb{Z}^k \times X : m, n \in \mathbb{N}^k, T^m(x) = T^n(y)\},$$

and

$$\mathcal{G}_T^{(2)} := \{((x, m, y), (w, n, z)) \in \mathcal{G}_T \times \mathcal{G}_T : y = w\}.$$

Define multiplication from  $\mathcal{G}_T^{(2)}$  to  $\mathcal{G}_T$  by  $(x, m, y)(y, n, z) := (x, m + n, z)$ , and

## Deaconu–Renault groupoids: algebraic structure

Fix  $k \in \mathbb{N} \setminus \{0\}$ . Let  $X$  be a locally compact Hausdorff space, and let  $T: \mathbb{N} \mapsto T^n$  be an action of  $\mathbb{N}^k$  on  $X$  by local homeomorphisms.

Define sets

$$\mathcal{G}_T := \{(x, m-n, y) \in X \times \mathbb{Z}^k \times X : m, n \in \mathbb{N}^k, T^m(x) = T^n(y)\},$$

and

$$\mathcal{G}_T^{(2)} := \{((x, m, y), (w, n, z)) \in \mathcal{G}_T \times \mathcal{G}_T : y = w\}.$$

Define multiplication from  $\mathcal{G}_T^{(2)}$  to  $\mathcal{G}_T$  by  $(x, m, y)(y, n, z) := (x, m+n, z)$ , and inversion on  $\mathcal{G}_T$  by  $(x, m, y)^{-1} := (y, -m, x)$ .

## Deaconu–Renault groupoids: algebraic structure

Fix  $k \in \mathbb{N} \setminus \{0\}$ . Let  $X$  be a locally compact Hausdorff space, and let  $T: \mathbb{N} \mapsto T^n$  be an action of  $\mathbb{N}^k$  on  $X$  by local homeomorphisms.

Define sets

$$\mathcal{G}_T := \{(x, m-n, y) \in X \times \mathbb{Z}^k \times X : m, n \in \mathbb{N}^k, T^m(x) = T^n(y)\},$$

and

$$\mathcal{G}_T^{(2)} := \{((x, m, y), (w, n, z)) \in \mathcal{G}_T \times \mathcal{G}_T : y = w\}.$$

Define multiplication from  $\mathcal{G}_T^{(2)}$  to  $\mathcal{G}_T$  by  $(x, m, y)(y, n, z) := (x, m+n, z)$ , and inversion on  $\mathcal{G}_T$  by  $(x, m, y)^{-1} := (y, -m, x)$ .

Then  $\mathcal{G}_T$  is a groupoid with unit space  $\mathcal{G}_T^{(0)} \cong X$ .

## Deaconu–Renault groupoids: algebraic structure

Fix  $k \in \mathbb{N} \setminus \{0\}$ . Let  $X$  be a locally compact Hausdorff space, and let  $T: \mathbb{N} \mapsto T^n$  be an action of  $\mathbb{N}^k$  on  $X$  by local homeomorphisms.

Define sets

$$\mathcal{G}_T := \{(x, m-n, y) \in X \times \mathbb{Z}^k \times X : m, n \in \mathbb{N}^k, T^m(x) = T^n(y)\},$$

and

$$\mathcal{G}_T^{(2)} := \{((x, m, y), (w, n, z)) \in \mathcal{G}_T \times \mathcal{G}_T : y = w\}.$$

Define multiplication from  $\mathcal{G}_T^{(2)}$  to  $\mathcal{G}_T$  by  $(x, m, y)(y, n, z) := (x, m+n, z)$ , and inversion on  $\mathcal{G}_T$  by  $(x, m, y)^{-1} := (y, -m, x)$ .

Then  $\mathcal{G}_T$  is a groupoid with unit space  $\mathcal{G}_T^{(0)} \cong X$ . We call  $\mathcal{G}_T$  a **(rank- $k$ ) Deaconu–Renault groupoid**.

## Deaconu–Renault groupoids: topological structure

## Deaconu–Renault groupoids: topological structure

For open sets  $U, V \subseteq X$  and  $m, n \in \mathbb{N}^k$ , we define

$$Z(U, m, n, V) := \{(x, m - n, y) : x \in U, y \in V, \text{ and } T^m(x) = T^n(y)\} \subseteq \mathcal{G}_T.$$

## Deaconu–Renault groupoids: topological structure

For open sets  $U, V \subseteq X$  and  $m, n \in \mathbb{N}^k$ , we define

$$Z(U, m, n, V) := \{(x, m - n, y) : x \in U, y \in V, \text{ and } T^m(x) = T^n(y)\} \subseteq \mathcal{G}_T.$$

The collection

$$\{Z(U, m, n, V) : U, V \subseteq X \text{ are open, and } m, n \in \mathbb{N}^k\}$$

is a basis for a second-countable locally compact Hausdorff topology on  $\mathcal{G}_T$ .

## Deaconu–Renault groupoids: topological structure

For open sets  $U, V \subseteq X$  and  $m, n \in \mathbb{N}^k$ , we define

$$Z(U, m, n, V) := \{(x, m - n, y) : x \in U, y \in V, \text{ and } T^m(x) = T^n(y)\} \subseteq \mathcal{G}_T.$$

The collection

$$\{Z(U, m, n, V) : U, V \subseteq X \text{ are open, and } m, n \in \mathbb{N}^k\}$$

is a basis for a second-countable locally compact Hausdorff topology on  $\mathcal{G}_T$ . Under this topology,  $\mathcal{G}_T$  is an amenable Hausdorff étale groupoid.

## Deaconu–Renault groupoids: topological structure

For open sets  $U, V \subseteq X$  and  $m, n \in \mathbb{N}^k$ , we define

$$Z(U, m, n, V) := \{(x, m - n, y) : x \in U, y \in V, \text{ and } T^m(x) = T^n(y)\} \subseteq \mathcal{G}_T.$$

The collection

$$\{Z(U, m, n, V) : U, V \subseteq X \text{ are open, and } m, n \in \mathbb{N}^k\}$$

is a basis for a second-countable locally compact Hausdorff topology on  $\mathcal{G}_T$ . Under this topology,  $\mathcal{G}_T$  is an amenable Hausdorff étale groupoid.

We have

$$\text{Iso}(\mathcal{G}_T) = \{\gamma \in \mathcal{G}_T : r(\gamma) = s(\gamma)\} = \{(x, p, y) \in \mathcal{G}_T : x = y\}.$$

## Deaconu–Renault groupoids: topological structure

For open sets  $U, V \subseteq X$  and  $m, n \in \mathbb{N}^k$ , we define

$$Z(U, m, n, V) := \{(x, m - n, y) : x \in U, y \in V, \text{ and } T^m(x) = T^n(y)\} \subseteq \mathcal{G}_T.$$

The collection

$$\{Z(U, m, n, V) : U, V \subseteq X \text{ are open, and } m, n \in \mathbb{N}^k\}$$

is a basis for a second-countable locally compact Hausdorff topology on  $\mathcal{G}_T$ . Under this topology,  $\mathcal{G}_T$  is an amenable Hausdorff étale groupoid.

We have

$$\text{Iso}(\mathcal{G}_T) = \{\gamma \in \mathcal{G}_T : r(\gamma) = s(\gamma)\} = \{(x, p, y) \in \mathcal{G}_T : x = y\}.$$

The topological interior  $\mathcal{I}_T$  of  $\text{Iso}(\mathcal{G}_T)$  is an amenable Hausdorff étale groupoid.

## The periodicity group

Lemma (A–Brownlowe–Sims 2024)

*Let  $\mathcal{G}_T$  be a minimal Deaconu–Renault groupoid with unit space  $X$ .*

## The periodicity group

Lemma (A–Brownlowe–Sims 2024)

Let  $\mathcal{G}_T$  be a minimal Deaconu–Renault groupoid with unit space  $X$ . Define

$$P_T := \{p \in \mathbb{Z}^k : (x, p, x) \in \mathcal{G}_T \text{ for all } x \in X\}.$$

## The periodicity group

Lemma (A–Brownlowe–Sims 2024)

Let  $\mathcal{G}_T$  be a minimal Deaconu–Renault groupoid with unit space  $X$ . Define

$$P_T := \{p \in \mathbb{Z}^k : (x, p, x) \in \mathcal{G}_T \text{ for all } x \in X\}.$$

Then  $P_T$  is a subgroup of  $\mathbb{Z}^k$ , and  $\mathcal{I}_T := \text{Iso}(\mathcal{G}_T)^\circ \cong X \times P_T$ .

## The periodicity group

Lemma (A–Brownlowe–Sims 2024)

Let  $\mathcal{G}_T$  be a minimal Deaconu–Renault groupoid with unit space  $X$ . Define

$$P_T := \{p \in \mathbb{Z}^k : (x, p, x) \in \mathcal{G}_T \text{ for all } x \in X\}.$$

Then  $P_T$  is a subgroup of  $\mathbb{Z}^k$ , and  $\mathcal{I}_T := \text{Iso}(\mathcal{G}_T)^\circ \cong X \times P_T$ .

We call  $P_T$  the **periodicity group** of  $\mathcal{G}_T$ .

## Bicharacters on the periodicity group

### Definition

Let  $G$  be a discrete group, and let  $\omega: G \times G \rightarrow \mathbb{T}$  be a 2-cocycle.

## Bicharacters on the periodicity group

### Definition

Let  $G$  be a discrete group, and let  $\omega: G \times G \rightarrow \mathbb{T}$  be a 2-cocycle.

- (a) We call  $\omega$  a **bicharacter** of  $G$  if it is homomorphism in each coordinate.

## Bicharacters on the periodicity group

### Definition

Let  $G$  be a discrete group, and let  $\omega: G \times G \rightarrow \mathbb{T}$  be a 2-cocycle.

- (a) We call  $\omega$  a **bicharacter** of  $G$  if it is homomorphism in each coordinate.
- (b) The **centre** of  $\omega$  is the group

$$Z_\omega := \{p \in P_T : \omega(p, q) = \omega(q, p) \text{ for all } q \in P_T\}.$$

## Bicharacters on the periodicity group

### Definition

Let  $G$  be a discrete group, and let  $\omega: G \times G \rightarrow \mathbb{T}$  be a 2-cocycle.

(a) We call  $\omega$  a **bicharacter** of  $G$  if it is homomorphism in each coordinate.

(b) The **centre** of  $\omega$  is the group

$$Z_\omega := \{p \in P_T : \omega(p, q) = \omega(q, p) \text{ for all } q \in P_T\}.$$

(c) We say that  $\omega$  **vanishes on its centre** if  $\omega(p, q) = 1$  whenever  $p \in Z_\omega$  or  $q \in Z_\omega$ .

## Bicharacters on the periodicity group

### Definition

Let  $G$  be a discrete group, and let  $\omega: G \times G \rightarrow \mathbb{T}$  be a 2-cocycle.

- (a) We call  $\omega$  a **bicharacter** of  $G$  if it is homomorphism in each coordinate.
- (b) The **centre** of  $\omega$  is the group

$$Z_\omega := \{p \in P_T : \omega(p, q) = \omega(q, p) \text{ for all } q \in P_T\}.$$

- (c) We say that  $\omega$  **vanishes on its centre** if  $\omega(p, q) = 1$  whenever  $p \in Z_\omega$  or  $q \in Z_\omega$ .

### Lemma (A–Brownlowe–Sims 2024)

Every cohomology class of a minimal Deaconu–Renault groupoid  $\mathcal{G}_T$  contains a continuous 2-cocycle  $\sigma$  such that  $\sigma|_{\mathcal{G}_T^{(2)}} = 1_X \times \omega$  for some bicharacter  $\omega$  of  $P_T$  that vanishes on  $Z_\omega$ .

## Simplicity of twisted $C^*$ -algebras of Deaconu–Renault groupoids

- Let  $\mathcal{G}_T$  be a **minimal** Deaconu–Renault groupoid with unit space  $X$ .

## Simplicity of twisted $C^*$ -algebras of Deaconu–Renault groupoids

- Let  $\mathcal{G}_T$  be a **minimal** Deaconu–Renault groupoid with unit space  $X$ .
- Let  $\sigma: \mathcal{G}_T^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle.

## Simplicity of twisted $C^*$ -algebras of Deaconu–Renault groupoids

- Let  $\mathcal{G}_T$  be a **minimal** Deaconu–Renault groupoid with unit space  $X$ .
- Let  $\sigma: \mathcal{G}_T^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle.
- Let  $\omega: P_T \times P_T \rightarrow \mathbb{T}$  be a bicharacter that vanishes on  $Z_\omega$  and is “equivalent” to  $\sigma|_{\mathcal{G}_T^{(2)}}$ .

## Simplicity of twisted $C^*$ -algebras of Deaconu–Renault groupoids

- Let  $\mathcal{G}_T$  be a **minimal** Deaconu–Renault groupoid with unit space  $X$ .
- Let  $\sigma: \mathcal{G}_T^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle.
- Let  $\omega: P_T \times P_T \rightarrow \mathbb{T}$  be a bicharacter that vanishes on  $Z_\omega$  and is “equivalent” to  $\sigma|_{\mathcal{G}_T^{(2)}}$ .

There is an action  $\theta: \mathcal{G}_T/\mathcal{I}_T \curvearrowright X \times \widehat{Z_\omega}$  that captures all the twisting that occurs when conjugating a function in  $C_c(\mathcal{I}_T, \sigma)$  by one in  $C_c(\mathcal{G}_T, \sigma)$ .

## Simplicity of twisted $C^*$ -algebras of Deaconu–Renault groupoids

- Let  $\mathcal{G}_T$  be a **minimal** Deaconu–Renault groupoid with unit space  $X$ .
- Let  $\sigma: \mathcal{G}_T^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle.
- Let  $\omega: P_T \times P_T \rightarrow \mathbb{T}$  be a bicharacter that vanishes on  $Z_\omega$  and is “equivalent” to  $\sigma|_{\mathcal{G}_T^{(2)}}$ .

There is an action  $\theta: \mathcal{G}_T/\mathcal{I}_T \curvearrowright X \times \widehat{Z_\omega}$  that captures all the twisting that occurs when conjugating a function in  $C_c(\mathcal{I}_T, \sigma)$  by one in  $C_c(\mathcal{G}_T, \sigma)$ . We call  $\theta$  the **spectral action**.

## Simplicity of twisted $C^*$ -algebras of Deaconu–Renault groupoids

- Let  $\mathcal{G}_T$  be a **minimal** Deaconu–Renault groupoid with unit space  $X$ .
- Let  $\sigma: \mathcal{G}_T^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle.
- Let  $\omega: P_T \times P_T \rightarrow \mathbb{T}$  be a bicharacter that vanishes on  $Z_\omega$  and is “equivalent” to  $\sigma|_{\mathcal{G}_T^{(2)}}$ .

There is an action  $\theta: \mathcal{G}_T/\mathcal{I}_T \curvearrowright X \times \widehat{Z_\omega}$  that captures all the twisting that occurs when conjugating a function in  $C_c(\mathcal{I}_T, \sigma)$  by one in  $C_c(\mathcal{G}_T, \sigma)$ . We call  $\theta$  the **spectral action**.

Theorem (A–Brownlowe–Sims 2024, A 2022)

*If  $C^*(\mathcal{I}_T, \sigma)$  is simple, then so is  $C^*(\mathcal{G}_T, \sigma)$ .*

## Simplicity of twisted $C^*$ -algebras of Deaconu–Renault groupoids

- Let  $\mathcal{G}_T$  be a **minimal** Deaconu–Renault groupoid with unit space  $X$ .
- Let  $\sigma: \mathcal{G}_T^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle.
- Let  $\omega: P_T \times P_T \rightarrow \mathbb{T}$  be a bicharacter that vanishes on  $Z_\omega$  and is “equivalent” to  $\sigma|_{\mathcal{G}_T^{(2)}}$ .

There is an action  $\theta: \mathcal{G}_T/\mathcal{I}_T \curvearrowright X \times \widehat{Z_\omega}$  that captures all the twisting that occurs when conjugating a function in  $C_c(\mathcal{I}_T, \sigma)$  by one in  $C_c(\mathcal{G}_T, \sigma)$ . We call  $\theta$  the **spectral action**.

Theorem (A–Brownlowe–Sims 2024, A 2022)

*If  $C^*(\mathcal{I}_T, \sigma)$  is simple, then so is  $C^*(\mathcal{G}_T, \sigma)$ . Moreover,  $C^*(\mathcal{I}_T, \sigma) \cong C_0(X, C^*(P_T, \omega))$ .*

## Simplicity of twisted $C^*$ -algebras of Deaconu–Renault groupoids

- Let  $\mathcal{G}_T$  be a **minimal** Deaconu–Renault groupoid with unit space  $X$ .
- Let  $\sigma: \mathcal{G}_T^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle.
- Let  $\omega: P_T \times P_T \rightarrow \mathbb{T}$  be a bicharacter that vanishes on  $Z_\omega$  and is “equivalent” to  $\sigma|_{\mathcal{G}_T^{(2)}}$ .

There is an action  $\theta: \mathcal{G}_T/\mathcal{I}_T \curvearrowright X \times \widehat{Z_\omega}$  that captures all the twisting that occurs when conjugating a function in  $C_c(\mathcal{I}_T, \sigma)$  by one in  $C_c(\mathcal{G}_T, \sigma)$ . We call  $\theta$  the **spectral action**.

Theorem (A–Brownlowe–Sims 2024, A 2022)

*If  $C^*(\mathcal{I}_T, \sigma)$  is simple, then so is  $C^*(\mathcal{G}_T, \sigma)$ . Moreover,  $C^*(\mathcal{I}_T, \sigma) \cong C_0(X, C^*(P_T, \omega))$ .*

*The twisted Deaconu–Renault groupoid  $C^*$ -algebra  $C^*(\mathcal{G}_T, \sigma)$  is simple if and only if the spectral action  $\theta$  is minimal*

## Simplicity of twisted $C^*$ -algebras of Deaconu–Renault groupoids

- Let  $\mathcal{G}_T$  be a **minimal** Deaconu–Renault groupoid with unit space  $X$ .
- Let  $\sigma: \mathcal{G}_T^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle.
- Let  $\omega: P_T \times P_T \rightarrow \mathbb{T}$  be a bicharacter that vanishes on  $Z_\omega$  and is “equivalent” to  $\sigma|_{\mathcal{G}_T^{(2)}}$ .

There is an action  $\theta: \mathcal{G}_T/\mathcal{I}_T \curvearrowright X \times \widehat{Z_\omega}$  that captures all the twisting that occurs when conjugating a function in  $C_c(\mathcal{I}_T, \sigma)$  by one in  $C_c(\mathcal{G}_T, \sigma)$ . We call  $\theta$  the **spectral action**.

### Theorem (A–Brownlowe–Sims 2024, A 2022)

*If  $C^*(\mathcal{I}_T, \sigma)$  is simple, then so is  $C^*(\mathcal{G}_T, \sigma)$ . Moreover,  $C^*(\mathcal{I}_T, \sigma) \cong C_0(X, C^*(P_T, \omega))$ .*

*The twisted Deaconu–Renault groupoid  $C^*$ -algebra  $C^*(\mathcal{G}_T, \sigma)$  is simple if and only if the spectral action  $\theta$  is minimal (in the sense that every orbit is dense in  $X \times \widehat{Z_\omega}$ ).*

## Twisted Steinberg algebras

Let  $\mathcal{G}$  be an **ample** Hausdorff groupoid, and let  $R$  be a **discrete** commutative unital ring with invertible elements  $R^\times$ .

## Twisted Steinberg algebras

Let  $\mathcal{G}$  be an **ample** Hausdorff groupoid, and let  $R$  be a **discrete** commutative unital ring with invertible elements  $R^\times$ . Let  $\sigma: \mathcal{G}^{(2)} \rightarrow R^\times$  be a continuous 2-cocycle.

## Twisted Steinberg algebras

Let  $\mathcal{G}$  be an **ample** Hausdorff groupoid, and let  $R$  be a **discrete** commutative unital ring with invertible elements  $R^\times$ . Let  $\sigma: \mathcal{G}^{(2)} \rightarrow R^\times$  be a continuous 2-cocycle.

Let  $A_R(\mathcal{G}, \sigma)$  be the  $R$ -module  $A_R(\mathcal{G})$ .

## Twisted Steinberg algebras

Let  $\mathcal{G}$  be an **ample** Hausdorff groupoid, and let  $R$  be a **discrete** commutative unital ring with invertible elements  $R^\times$ . Let  $\sigma: \mathcal{G}^{(2)} \rightarrow R^\times$  be a continuous 2-cocycle.

Let  $A_R(\mathcal{G}, \sigma)$  be the  $R$ -module  $A_R(\mathcal{G})$ . Define a twisted convolution product and a twisted involution in the same way that we defined these for  $C_c(\mathcal{G}, \sigma)$ .

## Twisted Steinberg algebras

Let  $\mathcal{G}$  be an **ample** Hausdorff groupoid, and let  $R$  be a **discrete** commutative unital ring with invertible elements  $R^\times$ . Let  $\sigma: \mathcal{G}^{(2)} \rightarrow R^\times$  be a continuous 2-cocycle.

Let  $A_R(\mathcal{G}, \sigma)$  be the  $R$ -module  $A_R(\mathcal{G})$ . Define a twisted convolution product and a twisted involution in the same way that we defined these for  $C_c(\mathcal{G}, \sigma)$ .

**Theorem (A–Clark–Courtney–Lin–McCormick–Ramagge 2022)**

*The above construction gives a  $*$ -algebra  $A_R(\mathcal{G}, \sigma)$  over  $R$ , called the **twisted Steinberg algebra** of  $(\mathcal{G}, \sigma)$ .*

## Twisted Steinberg algebras

Let  $\mathcal{G}$  be an **ample** Hausdorff groupoid, and let  $R$  be a **discrete** commutative unital ring with invertible elements  $R^\times$ . Let  $\sigma: \mathcal{G}^{(2)} \rightarrow R^\times$  be a continuous 2-cocycle.

Let  $A_R(\mathcal{G}, \sigma)$  be the  $R$ -module  $A_R(\mathcal{G})$ . Define a twisted convolution product and a twisted involution in the same way that we defined these for  $C_c(\mathcal{G}, \sigma)$ .

**Theorem (A–Clark–Courtney–Lin–McCormick–Ramagge 2022)**

*The above construction gives a  $*$ -algebra  $A_R(\mathcal{G}, \sigma)$  over  $R$ , called the **twisted Steinberg algebra** of  $(\mathcal{G}, \sigma)$ . Completing  $A_{\mathbb{C}_d}(\mathcal{G}, \sigma)$  with respect to the full/reduced norm gives the full/reduced  $C^*$ -algebra of  $(\mathcal{G}, \sigma)$ .*

## Twisted Steinberg algebras

Let  $\mathcal{G}$  be an **ample** Hausdorff groupoid, and let  $R$  be a **discrete** commutative unital ring with invertible elements  $R^\times$ . Let  $\sigma: \mathcal{G}^{(2)} \rightarrow R^\times$  be a continuous 2-cocycle.

Let  $A_R(\mathcal{G}, \sigma)$  be the  $R$ -module  $A_R(\mathcal{G})$ . Define a twisted convolution product and a twisted involution in the same way that we defined these for  $C_c(\mathcal{G}, \sigma)$ .

### Theorem (A–Clark–Courtney–Lin–McCormick–Ramagge 2022)

*The above construction gives a  $*$ -algebra  $A_R(\mathcal{G}, \sigma)$  over  $R$ , called the **twisted Steinberg algebra** of  $(\mathcal{G}, \sigma)$ . Completing  $A_{\mathbb{C}_d}(\mathcal{G}, \sigma)$  with respect to the full/reduced norm gives the full/reduced  $C^*$ -algebra of  $(\mathcal{G}, \sigma)$ .*

**Future work:** Characterise simplicity of twisted Steinberg algebras of ample Deaconu–Renault groupoids.

# Reconstruction Theory



## Twisted groupoids

2-cocycles on discrete groups are in one-to-one correspondence with group extensions.

## Twisted groupoids

2-cocycles on discrete groups are in one-to-one correspondence with group extensions. A **twist** (or **twisted groupoid**)  $\mathcal{E}$  by  $\mathbb{T}$  over a Hausdorff étale groupoid  $\mathcal{G}$  is the groupoid analogue of a group extension.

## Twisted groupoids

2-cocycles on discrete groups are in one-to-one correspondence with group extensions. A **twist** (or **twisted groupoid**)  $\mathcal{E}$  by  $\mathbb{T}$  over a Hausdorff étale groupoid  $\mathcal{G}$  is the groupoid analogue of a group extension.

### Example

Let  $\mathcal{G}$  be a Hausdorff étale groupoid, and let  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle.

## Twisted groupoids

2-cocycles on discrete groups are in one-to-one correspondence with group extensions. A **twist** (or **twisted groupoid**)  $\mathcal{E}$  by  $\mathbb{T}$  over a Hausdorff étale groupoid  $\mathcal{G}$  is the groupoid analogue of a group extension.

### Example

Let  $\mathcal{G}$  be a Hausdorff étale groupoid, and let  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle. Give  $\mathcal{E}_\sigma := \mathcal{G} \times \mathbb{T}$  the product topology.

## Twisted groupoids

2-cocycles on discrete groups are in one-to-one correspondence with group extensions. A **twist** (or **twisted groupoid**)  $\mathcal{E}$  by  $\mathbb{T}$  over a Hausdorff étale groupoid  $\mathcal{G}$  is the groupoid analogue of a group extension.

### Example

Let  $\mathcal{G}$  be a Hausdorff étale groupoid, and let  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle. Give  $\mathcal{E}_\sigma := \mathcal{G} \times \mathbb{T}$  the product topology. Then  $\mathcal{E}_\sigma$  is a Hausdorff groupoid under the operations

$$(\alpha, w)(\beta, z) := (\alpha\beta, \sigma(\alpha, \beta) wz) \quad \text{and} \quad (\alpha, w)^{-1} := (\alpha^{-1}, \overline{\sigma(\alpha, \alpha^{-1}) w})$$

for  $(\alpha, \beta) \in \mathcal{G}^{(2)}$  and  $w, z \in \mathbb{T}$ .

## Twisted groupoids

2-cocycles on discrete groups are in one-to-one correspondence with group extensions. A **twist** (or **twisted groupoid**)  $\mathcal{E}$  by  $\mathbb{T}$  over a Hausdorff étale groupoid  $\mathcal{G}$  is the groupoid analogue of a group extension.

### Example

Let  $\mathcal{G}$  be a Hausdorff étale groupoid, and let  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle. Give  $\mathcal{E}_\sigma := \mathcal{G} \times \mathbb{T}$  the product topology. Then  $\mathcal{E}_\sigma$  is a Hausdorff groupoid under the operations

$$(\alpha, w)(\beta, z) := (\alpha\beta, \sigma(\alpha, \beta) wz) \quad \text{and} \quad (\alpha, w)^{-1} := (\alpha^{-1}, \overline{\sigma(\alpha, \alpha^{-1}) w})$$

for  $(\alpha, \beta) \in \mathcal{G}^{(2)}$  and  $w, z \in \mathbb{T}$ . In fact,  $\mathcal{E}_\sigma$  is a twist by  $\mathbb{T}$  over  $\mathcal{G}$ .

## Twisted groupoids

2-cocycles on discrete groups are in one-to-one correspondence with group extensions. A **twist** (or **twisted groupoid**)  $\mathcal{E}$  by  $\mathbb{T}$  over a Hausdorff étale groupoid  $\mathcal{G}$  is the groupoid analogue of a group extension.

### Example

Let  $\mathcal{G}$  be a Hausdorff étale groupoid, and let  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$  be a continuous 2-cocycle. Give  $\mathcal{E}_\sigma := \mathcal{G} \times \mathbb{T}$  the product topology. Then  $\mathcal{E}_\sigma$  is a Hausdorff groupoid under the operations

$$(\alpha, w)(\beta, z) := (\alpha\beta, \sigma(\alpha, \beta) wz) \quad \text{and} \quad (\alpha, w)^{-1} := (\alpha^{-1}, \overline{\sigma(\alpha, \alpha^{-1}) w})$$

for  $(\alpha, \beta) \in \mathcal{G}^{(2)}$  and  $w, z \in \mathbb{T}$ . In fact,  $\mathcal{E}_\sigma$  is a twist by  $\mathbb{T}$  over  $\mathcal{G}$ .

Unlike for groups, not every twisted groupoid is induced by a continuous 2-cocycle [Kumjian 1986, ANSZ 2025].

## Twisted groupoid $C^*$ -algebras

Given a twist  $\mathcal{E}$  by  $\mathbb{T}$  over a Hausdorff étale groupoid  $\mathcal{G}$ , we can construct **full** and **reduced twisted groupoid  $C^*$ -algebras**  $C^*(\mathcal{G}; \mathcal{E})$  and  $C_r^*(\mathcal{G}; \mathcal{E})$ .

## Twisted groupoid $C^*$ -algebras

Given a twist  $\mathcal{E}$  by  $\mathbb{T}$  over a Hausdorff étale groupoid  $\mathcal{G}$ , we can construct **full** and **reduced twisted groupoid  $C^*$ -algebras**  $C^*(\mathcal{G}; \mathcal{E})$  and  $C_r^*(\mathcal{G}; \mathcal{E})$ .

If the twist  $\mathcal{E}$  is induced by a continuous 2-cocycle  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$ , then these  $C^*$ -algebras coincide with  $C^*(\mathcal{G}, \sigma)$  and  $C_r^*(\mathcal{G}, \sigma)$ , respectively.

## Twisted groupoid $C^*$ -algebras

Given a twist  $\mathcal{E}$  by  $\mathbb{T}$  over a Hausdorff étale groupoid  $\mathcal{G}$ , we can construct **full** and **reduced twisted groupoid  $C^*$ -algebras**  $C^*(\mathcal{G}; \mathcal{E})$  and  $C_r^*(\mathcal{G}; \mathcal{E})$ .

If the twist  $\mathcal{E}$  is induced by a continuous 2-cocycle  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$ , then these  $C^*$ -algebras coincide with  $C^*(\mathcal{G}, \sigma)$  and  $C_r^*(\mathcal{G}, \sigma)$ , respectively.

Suppose that  $\mathcal{G}$  is an **ample** Hausdorff groupoid, and let  $R$  be a commutative unital ring with invertible elements  $R^\times$ .

## Twisted groupoid $C^*$ -algebras

Given a twist  $\mathcal{E}$  by  $\mathbb{T}$  over a Hausdorff étale groupoid  $\mathcal{G}$ , we can construct **full** and **reduced twisted groupoid  $C^*$ -algebras**  $C^*(\mathcal{G}; \mathcal{E})$  and  $C_r^*(\mathcal{G}; \mathcal{E})$ .

If the twist  $\mathcal{E}$  is induced by a continuous 2-cocycle  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$ , then these  $C^*$ -algebras coincide with  $C^*(\mathcal{G}, \sigma)$  and  $C_r^*(\mathcal{G}, \sigma)$ , respectively.

Suppose that  $\mathcal{G}$  is an **ample** Hausdorff groupoid, and let  $R$  be a commutative unital ring with invertible elements  $R^\times$ .

In [ACCCLMRSS 2023], my coauthors and I introduced the notion of a **discrete twist**  $\mathcal{E}$  by  $R^\times$  over  $\mathcal{G}$ , that doesn't necessarily arise from a continuous  $R^\times$ -valued 2-cocycle on  $\mathcal{G}$ .

## Twisted groupoid $C^*$ -algebras

Given a twist  $\mathcal{E}$  by  $\mathbb{T}$  over a Hausdorff étale groupoid  $\mathcal{G}$ , we can construct **full** and **reduced twisted groupoid  $C^*$ -algebras**  $C^*(\mathcal{G}; \mathcal{E})$  and  $C_r^*(\mathcal{G}; \mathcal{E})$ .

If the twist  $\mathcal{E}$  is induced by a continuous 2-cocycle  $\sigma: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$ , then these  $C^*$ -algebras coincide with  $C^*(\mathcal{G}, \sigma)$  and  $C_r^*(\mathcal{G}, \sigma)$ , respectively.

Suppose that  $\mathcal{G}$  is an **ample** Hausdorff groupoid, and let  $R$  be a commutative unital ring with invertible elements  $R^\times$ .

In [ACCCLMRSS 2023], my coauthors and I introduced the notion of a **discrete twist**  $\mathcal{E}$  by  $R^\times$  over  $\mathcal{G}$ , that doesn't necessarily arise from a continuous  $R^\times$ -valued 2-cocycle on  $\mathcal{G}$ .

We then defined an associated **twisted Steinberg algebra**  $A_R(\mathcal{G}; \mathcal{E})$ , generalising those defined using continuous 2-cocycles.

## Cartan subalgebras

### Definition

Let  $A$  be a  $C^*$ -algebra. A  $C^*$ -subalgebra  $B \subseteq A$  is called a **Cartan subalgebra** if

## Definition

Let  $A$  be a  $C^*$ -algebra. A  $C^*$ -subalgebra  $B \subseteq A$  is called a **Cartan subalgebra** if

- $B$  is **maximal abelian**;

## Definition

Let  $A$  be a  $C^*$ -algebra. A  $C^*$ -subalgebra  $B \subseteq A$  is called a **Cartan subalgebra** if

- $B$  is **maximal abelian**;
- $A$  is generated by the **normalisers** of  $B$  in  $A$ ;

## Definition

Let  $A$  be a  $C^*$ -algebra. A  $C^*$ -subalgebra  $B \subseteq A$  is called a **Cartan subalgebra** if

- $B$  is **maximal abelian**;
- $A$  is generated by the **normalisers** of  $B$  in  $A$ ; and
- there is a **faithful conditional expectation**  $A \rightarrow B$ .

# Cartan subalgebras

## Definition

Let  $A$  be a  $C^*$ -algebra. A  $C^*$ -subalgebra  $B \subseteq A$  is called a **Cartan subalgebra** if

- $B$  is **maximal abelian**;
- $A$  is generated by the **normalisers** of  $B$  in  $A$ ; and
- there is a **faithful conditional expectation**  $A \rightarrow B$ .

## Theorem (Li 2020)

*Every classifiable  $C^*$ -algebra has a Cartan subalgebra.*

## Reconstruction of twisted groupoid $C^*$ -algebras

**Kumjian–Renault theory** is the  $C^*$ -algebraic analogue of **Feldman–Moore theory** for von Neumann algebras.

## Reconstruction of twisted groupoid $C^*$ -algebras

**Kumjian–Renault theory** is the  $C^*$ -algebraic analogue of **Feldman–Moore theory** for von Neumann algebras.

Theorem (Kumjian 1986, Renault 2008)

*If  $B$  is a Cartan subalgebra of a  $C^*$ -algebra  $A$ , then there is a unique twisted groupoid  $(\mathcal{G}, \mathcal{E})$  and an isomorphism  $\Psi: A \rightarrow C_r^*(\mathcal{G}; \mathcal{E})$  such that  $\Psi(B) = C_0(\mathcal{G}^{(0)})$ .*

## Reconstruction of twisted groupoid $C^*$ -algebras

**Kumjian–Renault theory** is the  $C^*$ -algebraic analogue of **Feldman–Moore theory** for von Neumann algebras.

Theorem (Kumjian 1986, Renault 2008)

*If  $B$  is a Cartan subalgebra of a  $C^*$ -algebra  $A$ , then there is a unique twisted groupoid  $(\mathcal{G}, \mathcal{E})$  and an isomorphism  $\Psi: A \rightarrow C_r^*(\mathcal{G}; \mathcal{E})$  such that  $\Psi(B) = C_0(\mathcal{G}^{(0)})$ . The converse also holds if  $\mathcal{G}$  is Hausdorff, étale, and effective.*

## Reconstruction of twisted groupoid $C^*$ -algebras

**Kumjian–Renault theory** is the  $C^*$ -algebraic analogue of **Feldman–Moore theory** for von Neumann algebras.

Theorem (Kumjian 1986, Renault 2008)

*If  $B$  is a Cartan subalgebra of a  $C^*$ -algebra  $A$ , then there is a unique twisted groupoid  $(\mathcal{G}, \mathcal{E})$  and an isomorphism  $\Psi: A \rightarrow C_r^*(\mathcal{G}; \mathcal{E})$  such that  $\Psi(B) = C_0(\mathcal{G}^{(0)})$ . The converse also holds if  $\mathcal{G}$  is Hausdorff, étale, and effective.*

In particular, every classifiable  $C^*$ -algebra is a twisted groupoid  $C^*$ -algebra.

## Reconstruction of twisted groupoid $C^*$ -algebras

**Kumjian–Renault theory** is the  $C^*$ -algebraic analogue of **Feldman–Moore theory** for von Neumann algebras.

### Theorem (Kumjian 1986, Renault 2008)

*If  $B$  is a Cartan subalgebra of a  $C^*$ -algebra  $A$ , then there is a unique twisted groupoid  $(\mathcal{G}, \mathcal{E})$  and an isomorphism  $\Psi: A \rightarrow C_r^*(\mathcal{G}; \mathcal{E})$  such that  $\Psi(B) = C_0(\mathcal{G}^{(0)})$ . The converse also holds if  $\mathcal{G}$  is Hausdorff, étale, and effective.*

In particular, every classifiable  $C^*$ -algebra is a twisted groupoid  $C^*$ -algebra. However, not every twisted groupoid  $C^*$ -algebra is classifiable.

## Reconstruction of twisted groupoid $C^*$ -algebras

**Kumjian–Renault theory** is the  $C^*$ -algebraic analogue of **Feldman–Moore theory** for von Neumann algebras.

**Theorem (Kumjian 1986, Renault 2008)**

*If  $B$  is a Cartan subalgebra of a  $C^*$ -algebra  $A$ , then there is a unique twisted groupoid  $(\mathcal{G}, \mathcal{E})$  and an isomorphism  $\Psi: A \rightarrow C_r^*(\mathcal{G}; \mathcal{E})$  such that  $\Psi(B) = C_0(\mathcal{G}^{(0)})$ . The converse also holds if  $\mathcal{G}$  is Hausdorff, étale, and effective.*

In particular, every classifiable  $C^*$ -algebra is a twisted groupoid  $C^*$ -algebra. However, not every twisted groupoid  $C^*$ -algebra is classifiable.

**Open question:** Is every  $C^*$ -algebra a twisted groupoid  $C^*$ -algebra?

# Reconstruction of twisted Steinberg algebras

## Previous work:

- Proved analogues of Kumjian and Renault's C\*-algebraic reconstruction theorems for **twisted Steinberg algebras**

# Reconstruction of twisted Steinberg algebras

## Previous work:

- Proved analogues of Kumjian and Renault's C\*-algebraic reconstruction theorems for **twisted Steinberg algebras**, by developing abstract-algebraic notions of Cartan pairs and C\*-diagonals [ACCCLMRSS 2023].

# Reconstruction of twisted Steinberg algebras

## Previous work:

- Proved analogues of Kumjian and Renault's C\*-algebraic reconstruction theorems for **twisted Steinberg algebras**, by developing abstract-algebraic notions of Cartan pairs and C\*-diagonals [ACCCLMRSS 2023].
- Extended our reconstruction theorem to include discrete twists over **non-effective** groupoids by removing the requirement of **maximality** of the abelian subalgebra [ACCCLMRSS 2023].

# Reconstruction of twisted Steinberg algebras

## Previous work:

- Proved analogues of Kumjian and Renault's C\*-algebraic reconstruction theorems for **twisted Steinberg algebras**, by developing abstract-algebraic notions of Cartan pairs and C\*-diagonals [ACCCLMRSS 2023].
- Extended our reconstruction theorem to include discrete twists over **non-effective** groupoids by removing the requirement of **maximality** of the abelian subalgebra [ACCCLMRSS 2023]. Thus we improved on Kumjian–Renault theory in the abstract-algebraic setting.

## Reconstruction of twisted Steinberg algebras

### Previous work:

- Proved analogues of Kumjian and Renault's C\*-algebraic reconstruction theorems for **twisted Steinberg algebras**, by developing abstract-algebraic notions of Cartan pairs and C\*-diagonals [ACCCLMRSS 2023].
- Extended our reconstruction theorem to include discrete twists over **non-effective** groupoids by removing the requirement of **maximality** of the abelian subalgebra [ACCCLMRSS 2023]. Thus we improved on Kumjian–Renault theory in the abstract-algebraic setting.
- Proved that an analogous extension of Kumjian–Renault theory is impossible in the C\*-algebraic setting [ABCCLMR 2024].

## Reconstruction of twisted Steinberg algebras

### Previous work:

- Proved analogues of Kumjian and Renault's C\*-algebraic reconstruction theorems for **twisted Steinberg algebras**, by developing abstract-algebraic notions of Cartan pairs and C\*-diagonals [ACCCLMRSS 2023].
- Extended our reconstruction theorem to include discrete twists over **non-effective** groupoids by removing the requirement of **maximality** of the abelian subalgebra [ACCCLMRSS 2023]. Thus we improved on Kumjian–Renault theory in the abstract-algebraic setting.
- Proved that an analogous extension of Kumjian–Renault theory is impossible in the C\*-algebraic setting [ABCCLMR 2024].

**Current work:** Prove existence and uniqueness theorems for abstract-algebraic Cartan pairs

## Reconstruction of twisted Steinberg algebras

### Previous work:

- Proved analogues of Kumjian and Renault's C\*-algebraic reconstruction theorems for **twisted Steinberg algebras**, by developing abstract-algebraic notions of Cartan pairs and C\*-diagonals [ACCCLMRSS 2023].
- Extended our reconstruction theorem to include discrete twists over **non-effective** groupoids by removing the requirement of **maximality** of the abelian subalgebra [ACCCLMRSS 2023]. Thus we improved on Kumjian–Renault theory in the abstract-algebraic setting.
- Proved that an analogous extension of Kumjian–Renault theory is impossible in the C\*-algebraic setting [ABCCLMR 2024].

**Current work:** Prove existence and uniqueness theorems for abstract-algebraic Cartan pairs, and extend the theory to cover R-rings rather than just R-algebras.

## References

- [1] B. Armstrong, *A uniqueness theorem for twisted groupoid  $C^*$ -algebras*, J. Funct. Anal. **283** (2022), 1–33.
- [2] B. Armstrong, J.H. Brown, L.O. Clark, K. Courtney, Y.-F. Lin, K. McCormick, and J. Ramagge, *The local bisection hypothesis for twisted groupoid  $C^*$ -algebras*, Semigroup Forum **107** (2023), 609–623.
- [3] B. Armstrong, N. Brownlowe, and A. Sims, *Simplicity of twisted  $C^*$ -algebras of Deaconu–Renault groupoids*, J. Noncommut. Geom. **18** (2024), 265–312.
- [4] B. Armstrong, G.G. de Castro, L.O. Clark, K. Courtney, Y.-F. Lin, K. McCormick, J. Ramagge, A. Sims, and B. Steinberg, *Reconstruction of twisted Steinberg algebras*, Int. Math. Res. Not. IMRN **2023** (2023), 2474–2542.
- [5] B. Armstrong, L.O. Clark, K. Courtney, Y.-F. Lin, K. McCormick, and J. Ramagge, *Twisted Steinberg algebras*, J. Pure Appl. Algebra **226** (2022), 1–33.
- [6] B. Armstrong, A.C.S. Ng, A. Sims, and Y. Zhou, *A twist over a minimal étale groupoid that is topologically nontrivial over the interior of the isotropy*, Proc. Amer. Math. Soc. **153** (2025), 1849–1866.

## References

- [7] J.H. Brown, L.O. Clark, C. Farthing, and A. Sims, *Simplicity of algebras associated to étale groupoids*, Semigroup Forum **88** (2014), 433–452.
- [8] L.O. Clark, C. Farthing, A. Sims, and M. Tomforde, *A groupoid generalization of Leavitt path algebras*, Semigroup Forum **89** (2014), 501–517.
- [9] A. Kumjian, *On  $C^*$ -diagonals*, Canad. J. Math. **38** (1986), 969–1008.
- [10] X. Li, *Every classifiable simple  $C^*$ -algebra has a Cartan subalgebra*, Invent. Math. **219** (2020), 653–699.
- [11] J. Renault, *A groupoid approach to  $C^*$ -algebras*, Lecture Notes in Math., vol. 793, Springer-Verlag, New York, 1980.
- [12] \_\_\_\_\_, *Cartan subalgebras in  $C^*$ -algebras*, Irish Math. Soc. Bull. **61** (2008), 29–63.
- [13] B. Steinberg, *A groupoid approach to discrete inverse semigroup algebras*, Adv. Math. **223** (2010), 689–727.

A scenic coastal view featuring a bright blue sky with scattered white clouds. In the foreground, there is a well-maintained green lawn. Two large, leafy green bushes are visible in the lower-left and lower-right corners. In the middle ground, a paved path leads towards a sandy beach. On the beach, there is a small, isolated tree. The ocean is a vibrant turquoise color. A large, semi-transparent white text overlay with a black outline and a small heart on the 's' reads "Thanks!"

Thanks!