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Groupoids

A groupoid G is a small category in which every morphism γ has a unique inverse γ−1.

Each γ ∈ G has a range r(γ) = γγ−1 and a source s(γ) = γ−1γ.

Composition (α,β) 7→ αβ is only defined on the set of composable pairs

G(2) =
{
(α,β) ∈ G× G | s(α) = r(β)

}
⊆ G× G.

The elements of the unit space G(0) = r(G) = s(G) behave like identities wherever

composition is defined.

Examples: Groups, equivalence relations, group actions, directed graph groupoids, etc.
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Topological groupoids

We call a groupoid G a topological groupoid if it has a topology with respect to which

multiplication and inversion are continuous.

Let G be a locally compact Hausdorff groupoid. We call an open subset B of G an open

bisection if r|B and s|B are homeomorphisms onto open subsets of G.

We say that G is étale if it has a basis of open bisections. Every Hausdorff étale groupoid G

has a full C*-algebra C∗(G) and a reduced C*-algebra C∗
r(G).

We say that G is ample if it has a basis of compact open bisections (called “cobs”). Given

any ample Hausdorff groupoid G and commutative unital ring R, there is an associated

Steinberg algebraAR(G).
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Structure Theory





Simplicity of ∗-algebras and of C*-algebras

Simplicity and various other properties of C*-algebras play an important role in C*-algebraic

classification theory.

Simple ∗-algebras and C*-algebras are the “building blocks” of more

complicated ones.

Definition

LetA be a ∗-algebra. An ideal I ofA is a ∗-subalgebra such that ax, xa ∈ I for all a ∈ A and

x ∈ I. We require ideals in a C*-algebra to additionally be closed in norm.

Question: How can we tell whether a given groupoid C*-algebra or Steinberg algebra is

simple?
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Simplicity of Steinberg algebras and groupoid C*-algebras

Definition

Let G be a Hausdorff étale groupoid.

The isotropy of G is the subgroupoid Iso(G) := {γ ∈ G : r(γ) = s(γ)}.
Let I denote the topological interior of Iso(G). We say that G is effective if I = G(0). In
particular, nontrivial discrete groups are never effective.

We say that G isminimal if r(s−1(x)) is dense in G(0) for each x ∈ G(0).

Theorem (Brown–Clark–Farthing–Sims 2014)

Let G be a Hausdorff étale groupoid.

(a) If G is ample, thenACd
(G) is simple if and only if G is minimal and effective.

(b) If G is second-countable and amenable, then C∗(G) is simple if and only if G is minimal

and effective.

Becky Armstrong (VUW, NZ) 8 25
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Continuous 2-cocycles and twisted groupoid C*-algebras

Let G be a Hausdorff étale groupoid.

Definition

A continuous 2-cocycle on G is a continuous map σ : G(2) → T such that

(a) σ(α,β)σ(αβ,γ) = σ(α,βγ)σ(β,γ) for all composable morphisms α,β,γ ∈ G; and

(b) σ(r(γ),γ) = σ(γ, s(γ)) = 1 for all γ ∈ G.

Let Cc(G,σ) be the vector space Cc(G) with convolution product and involution given by

(f ∗ g)(α) :=
∑

β∈r(α)G

σ(β,β−1α) f(β)g(β−1α) and f∗(α) := σ(α,α−1) f(α−1).

Then Cc(G,σ) is a ∗-algebra. We complete Cc(G,σ) with respect to full and reduced norms

defined analogously to the non-twisted setting to obtain the full and reduced twisted

groupoid C*-algebras C∗(G,σ) and C∗
r(G,σ), respectively.

Becky Armstrong (VUW, NZ) 9 25
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defined analogously to the non-twisted setting to obtain the full and reduced twisted

groupoid C*-algebras C∗(G,σ) and C∗
r(G,σ), respectively.
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Twisted C*-algebras of non-minimal groupoids

Let G be a non-minimal Hausdorff étale groupoid, and let σ : G(2) → T be a continuous

2-cocycle.

Then there is a nonempty proper open subsetU ⊆ G(0) such that r(s−1(U)) ⊆ U.

It follows that GU := {γ ∈ G : s(γ) ∈ U} is a groupoid with unit spaceU, and C∗
r(GU,σ) is a

nontrivial ideal of C∗
r(G,σ).

So C*-algebras of non-minimal groupoids are never simple. What about C*-algebras of

minimal groupoids?

If G is effective, then C∗
r(G,σ) is simple if and only if G is minimal [A 2022].

Open question: What happens if G is minimal and not effective?
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The irrational rotation algebra

The group(oid) Z2 is amenable and minimal, but not effective. Thus the group(oid)

C*-algebra C∗(Z2) is not simple.

Fix θ ∈ (0, 1)\Q, and let σθ : Z2 × Z2 → T be the 2-cocycle given by

σθ

(
(m,n), (p,q)

)
:= e2npθπi.

The twisted group(oid) C*-algebra C∗(Z2,σθ) is the irrational rotation algebraAθ, which is

known to be simple! (This is despite Z2 not being effective.)

So we need a different simplicity characterisation for twisted groupoid C*-algebras.
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Deaconu–Renault groupoids: algebraic structure

Fix k ∈ N\{0}.

Let X be a locally compact Hausdorff space, and let T : n 7→ Tn be an action of

Nk on X by local homeomorphisms.

Define sets

GT :=
{
(x,m− n,y) ∈ X× Zk × X : m,n ∈ Nk, Tm(x) = Tn(y)

}
,

and

G
(2)
T :=

{(
(x,m,y), (w,n, z)

)
∈ GT × GT : y = w

}
.

Define multiplication from G
(2)
T to GT by (x,m,y)(y,n, z) := (x,m+ n, z), and inversion on

GT by (x,m,y)−1 := (y,−m, x).

Then GT is a groupoid with unit space G
(0)
T

∼= X. We call GT a (rank-k) Deaconu–Renault

groupoid.
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Deaconu–Renault groupoids: topological structure

For open setsU,V ⊆ X andm,n ∈ Nk, we define

Z(U,m,n,V) := {(x,m− n,y) : x ∈ U, y ∈ V, and Tm(x) = Tn(y)} ⊆ GT .

The collection {
Z(U,m,n,V) : U,V ⊆ X are open, andm,n ∈ Nk

}
is a basis for a second-countable locally compact Hausdorff topology on GT . Under this

topology, GT is an amenable Hausdorff étale groupoid.

We have

Iso(GT ) = {γ ∈ GT : r(γ) = s(γ)} = {(x,p,y) ∈ GT : x = y}.

The topological interior IT of Iso(GT ) is an amenable Hausdorff étale groupoid.
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The periodicity group

Lemma (A–Brownlowe–Sims 2024)

Let GT be a minimal Deaconu–Renault groupoid with unit space X.

Define

PT := {p ∈ Zk : (x,p, x) ∈ GT for all x ∈ X}.

Then PT is a subgroup of Zk, and IT := Iso(GT )
◦ ∼= X× PT .

We call PT the periodicity group of GT .
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Bicharacters on the periodicity group

Definition

LetG be a discrete group, and letω : G×G → T be a 2-cocycle.

(a) We callω a bicharacter ofG if it is homomorphism in each coordinate.

(b) The centre ofω is the group

Zω :=
{
p ∈ PT : ω(p,q) = ω(q,p) for all q ∈ PT

}
.

(c) We say thatω vanishes on its centre ifω(p,q) = 1 whenever p ∈ Zω or q ∈ Zω.

Lemma (A–Brownlowe–Sims 2024)

Every cohomology class of a minimal Deaconu–Renault groupoid GT contains a continuous
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Simplicity of twisted C*-algebras of Deaconu–Renault groupoids

Let GT be aminimal Deaconu–Renault groupoid with unit space X.

Let σ : G
(2)
T → T be a continuous 2-cocycle.

Letω : PT × PT → T be a bicharacter that vanishes on Zω and is “equivalent” to σ|
I
(2)
T

.

There is an action θ : GT/IT y X× Ẑω that captures all the twisting that occurs when

conjugating a function in Cc(IT ,σ) by one in Cc(GT ,σ). We call θ the spectral action.

Theorem (A–Brownlowe–Sims 2024, A 2022)

If C∗(IT ,σ) is simple, then so is C∗(GT ,σ). Moreover, C∗(IT ,σ) ∼= C0
(
X,C∗(PT ,ω)

)
.

The twisted Deaconu–Renault groupoid C*-algebra C∗(GT ,σ) is simple if and only if the

spectral action θ is minimal (in the sense that every orbit is dense in X× Ẑω).
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Twisted Steinberg algebras

Let G be an ample Hausdorff groupoid, and let R be a discrete commutative unital ring with

invertible elements R×.

Let σ : G(2) → R× be a continuous 2-cocycle.

LetAR(G,σ) be the R-moduleAR(G). Define a twisted convolution product and a twisted

involution in the same way that we defined these for Cc(G,σ).

Theorem (A–Clark–Courtney–Lin–McCormick–Ramagge 2022)

The above construction gives a ∗-algebraAR(G,σ) over R, called the twisted Steinberg

algebra of (G,σ). CompletingACd
(G,σ) with respect to the full/reduced norm gives the

full/reduced C*-algebra of (G,σ).

Future work: Characterise simplicity of twisted Steinberg algebras of ample

Deaconu–Renault groupoids.
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Reconstruction Theory





Twisted groupoids

2-cocycles on discrete groups are in one-to-one correspondence with group extensions.

A

twist (or twisted groupoid) E by T over a Hausdorff étale groupoid G is the groupoid

analogue of a group extension.

Example

Let G be a Hausdorff étale groupoid, and let σ : G(2) → T be a continuous 2-cocycle. Give
Eσ := G× T the product topology. Then Eσ is a Hausdorff groupoid under the operations

(α,w)(β, z) :=
(
αβ, σ(α,β)wz

)
and (α,w)−1 :=

(
α−1, σ(α,α−1)w

)
for (α,β) ∈ G(2) andw, z ∈ T. In fact, Eσ is a twist by T over G.

Unlike for groups, not every twisted groupoid is induced by a continuous 2-cocycle
[Kumjian 1986, ANSZ 2025].
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Twisted groupoid C*-algebras

Given a twist E by T over a Hausdorff étale groupoid G, we can construct full and reduced

twisted groupoid C*-algebras C∗(G;E) and C∗
r(G;E).

If the twist E is induced by a continuous 2-cocycle σ : G(2) → T, then these C*-algebras

coincide with C∗(G,σ) and C∗
r(G,σ), respectively.

Suppose that G is an ample Hausdorff groupoid, and let R be a commutative unital ring with

invertible elements R×.

In [ACCCLMRSS 2023], my coauthors and I introduced the notion of a discrete twist E by

R× over G, that doesn’t necessarily arise from a continuous R×-valued 2-cocycle on G.

We then defined an associated twisted Steinberg algebraAR(G;E), generalising those
defined using continuous 2-cocycles.
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Cartan subalgebras

Definition

LetA be a C*-algebra. A C*-subalgebra B ⊆ A is called a Cartan subalgebra if

B ismaximal abelian;

A is generated by the normalisers of B inA; and

there is a faithful conditional expectationA → B.

Theorem (Li 2020)

Every classifiable C*-algebra has a Cartan subalgebra.
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Reconstruction of twisted groupoid C*-algebras

Kumjian–Renault theory is the C*-algebraic analogue of Feldman–Moore theory for von

Neumann algebras.

Theorem (Kumjian 1986, Renault 2008)

If B is a Cartan subalgebra of a C*-algebraA, then there is a unique twisted groupoid (G,E)
and an isomorphism Ψ : A → C∗

r(G;E) such that Ψ(B) = C0(G
(0)). The converse also holds

if G is Hausdorff, étale, and effective.

In particular, every classifiable C*-algebra is a twisted groupoid C*-algebra. However, not

every twisted groupoid C*-algebra is classifiable.

Open question: Is every C*-algebra a twisted groupoid C*-algebra?
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Reconstruction of twisted Steinberg algebras

Previous work:

Proved analogues of Kumjian and Renault’s C*-algebraic reconstruction theorems for

twisted Steinberg algebras

, by developing abstract-algebraic notions of Cartan pairs

and C*-diagonals [ACCCLMRSS 2023].

Extended our reconstruction theorem to include discrete twists over non-effective

groupoids by removing the requirement ofmaximality of the abelian subalgebra

[ACCCLMRSS 2023]. Thus we improved on Kumjian–Renault theory in the

abstract-algebraic setting.

Proved that an analogous extension of Kumjian–Renault theory is impossible in the

C*-algebraic setting [ABCCLMR 2024].

Current work: Prove existence and uniqueness theorems for abstract-algebraic Cartan pairs,

and extend the theory to cover R-rings rather than just R-algebras.
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