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Groupoids

A groupoid G is a small category in which every morphism y has a unique inverse y—1.
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Groupoids

A groupoid G is a small category in which every morphism vy has a unique inverse y—

Eachy € G has arange r(y) =yy ! and a source s(y) =y 1y.
Composition (&, B) — «f is only defined on the set of composable pairs

5 ={(,B)eGx G |s(a)=r(B)} CGxG.

The elements of the unit space G(®) = r(G) = s(G) behave like identities wherever
composition is defined.
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Examples: Groups, equivalence relations, group actions, directed graph groupoids, etc.
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Topological groupoids

We call a groupoid G a topological groupoid if it has a topology with respect to which
multiplication and inversion are continuous.
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Topological groupoids

We call a groupoid G a topological groupoid if it has a topology with respect to which
multiplication and inversion are continuous.

Let G be a locally compact Hausdorff groupoid. We call an open subset B of G an open
bisection if r|g and s|g are homeomorphisms onto open subsets of G.

We say that G is étale if it has a basis of open bisections. Every Hausdorff étale groupoid §
has a full C*-algebra C*(5) and a reduced C*-algebra C:(9).

We say that G is ample if it has a basis of compact open bisections (called “cobs”). Given
any ample Hausdorff groupoid G and commutative unital ring R, there is an associated
Steinberg algebra AR (9).
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My research
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My research: twisted groupoid algebras

twisted
groupoid
C*-algebras
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Structure Theory






Simplicity of x-algebras and of C*-algebras

Simplicity and various other properties of C*-algebras play an important role in C*-algebraic
classification theory.
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Simplicity of x-algebras and of C*-algebras

Simplicity and various other properties of C*-algebras play an important role in C*-algebraic
classification theory. Simple x-algebras and C*-algebras are the “building blocks” of more
complicated ones.

Definition

Let A be a *x-algebra. An ideal I of A is a *-subalgebra such that ax, xa € Iforall a € A and
x € I. We require ideals in a C*-algebra to additionally be closed in norm.

Question: How can we tell whether a given groupoid C*-algebra or Steinberg algebra is
simple?
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Simplicity of Steinberg algebras and groupoid C*-algebras

Definition
Let G be a Hausdorff étale groupoid.
m The isotropy of G is the subgroupoid Iso(G) :={y € G : r(y) = s(y)}.

m Let J denote the topological interior of Iso(G). We say that G is effective if 7 = G(0). In
particular, nontrivial discrete groups are never effective.

m We say that G is minimal if r(s—%(x)) is dense in () for each x € G(9).

Theorem (Brown-Clark—Farthing—Sims 2014)

Let G be a Hausdorff étale groupoid.
(@) IfGis ample, then Ac,(S) is simple if and only if G is minimal and effective.
(b) If§ is second-countable and amenable, then C*(G) is simple if and only if G is minimal
and effective.
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Continuous 2-cocycles and twisted groupoid C*-algebras

Let G be a Hausdorff étale groupoid.

Definition
A continuous 2-cocycle on § is a continuous map o: §(2) — T such that

@ o(e, B)o(xB,y) = o(e, By) o(B,vy) forall composable morphisms «, 3,y € G; and
(b) o(r(y),y) = oly,s(y)) =1forally € G.

Let C.(9, o) be the vector space C.(G) with convolution product and involution given by

(Frg)a):= Y op,p ) f(B)g(p a) and (o) = oo, 1) Fla L),
Ber(x)g

Then C.(G, o) is a x-algebra. We complete C. (G, o) with respect to full and reduced norms
defined analogously to the non-twisted setting to obtain the full and reduced twisted
groupoid C*-algebras C*(G, o) and C¥(9, o), respectively.
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Twisted C*-algebras of non-minimal groupoids

Let G be a non-minimal Hausdorff étale groupoid, and let o: G(2) 5 T be a continuous
2-cocycle.

Then there is a nonempty proper open subset U C G(© such that r(s~1(U)) C U.

It follows that Gy =={y € G :s(y) € U} is a groupoid with unit space U, and C;(Sy, o) is a
nontrivial ideal of C3 (G, o).

So C*-algebras of non-minimal groupoids are never simple. What about C*-algebras of
minimal groupoids?

If G is effective, then C%(9, o) is simple if and only if G is minimal [A 2022].
Open question: What happens if G is minimal and not effective?
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The irrational rotation algebra

The group(oid) Z? is amenable and minimal, but not effective. Thus the group(oid)
C*-algebra C*(Z?) is not simple.

Fix® € (0,1)\Q, and let 0g: Z? x Z? — T be the 2-cocycle given by

o0 ((m,n), (p, q)) = 2P0

The twisted group(oid) C*-algebra C*(Z?, o) is the irrational rotation algebra Ag, which is
known to be simple! (This is despite Z? not being effective.)

So we need a different simplicity characterisation for twisted groupoid C*-algebras.
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Define sets
G = {(x,;m—my) e XxZ" x X : mne N T™(x) =T"(y)},

and
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Deaconu-Renault groupoids: algebraic structure

Fix k € N\{0}. Let X be a locally compact Hausdorff space, and let T: n — T™ be an action of
N¥ on X by local homeomorphisms.

Define sets
G = {(x,;m—my) e XxZ" x X : mne N T™(x) =T"(y)},
and

9(T2) ={((x,my), (w,n,z)) € G x G1 : y =w}.

Define multiplication from 9(T2) to Gt by (x, m,y)(y,n, z) = (x, m+n, z), and inversion on

9T by (X, mvy)_l = (yv_mvx)'

Then Gt is a groupoid with unit space S(TO) = X. We call Gt a (rank-k) Deaconu—Renault
groupoid.
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Foropen sets U,V C X and m, n € N¥, we define

ZUmnV)={xm—-ny):xelUyeV,andT™(x) =T"(y)} C G.
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ZUmnV)={xm—-ny):xelUyeV,andT™(x) =T"(y)} C G.

The collection
{Z(U,m,n,V) : U,V C Xareopen,and m,n € N}

is a basis for a second-countable locally compact Hausdorff topology on Gt. Under this
topology, §1 is an amenable Hausdorff étale groupoid.

We have
Iso(G1) ={y € 91 :r(v) =s(¥)} ={(x,p.y) € G1: x =y}

The topological interior J1 of Iso(S) is an amenable Hausdorff étale groupoid.
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The periodicity group

Lemma (A—Brownlowe-Sims 2024)

Let Gt be a minimal Deaconu—Renault groupoid with unit space X.
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The periodicity group

Lemma (A—Brownlowe-Sims 2024)

Let Gt be a minimal Deaconu—Renault groupoid with unit space X. Define
Pr={p € Z*:(x,p,x) € G forallx € X}.

Then Pt is a subgroup of Z¥, and It = Iso(G7)° = X x Pr.

We call Pt the periodicity group of G.
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Bicharacters on the periodicity group

Let G be a discrete group, and let w: G x G — T be a 2-cocycle.
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Bicharacters on the periodicity group

Definition
Let G be a discrete group, and let w: G x G — T be a 2-cocycle.

(@) We call w a bicharacter of G if it is homomorphism in each coordinate.

(b) The centre of w is the group
Zy ={p€ePr:w(pq)=w(qp)forallqge Pr}.

(c) We say that w vanishes on its centre if w(p, q) = 1 wheneverp € Z,, orq € Z,.

Lemma (A—Brownlowe-Sims 2024)

Every cohomology class of a minimal Deaconu—Renault groupoid Gt contains a continuous
2-cocycle o such that 0'|j(2) = 1x x w for some bicharacter w of Py that vanishes on Z,.
T
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Simplicity of twisted C*-algebras of Deaconu—Renault groupoids

m Let Gt be a minimal Deaconu—Renault groupoid with unit space X.
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m leto: S(Tz) — T be a continuous 2-cocycle.

m Let w: Pt x P+ — T be a bicharacter that vanishes on Z, and is “equivalent” to (7|j[2].
T

There is an action 0: §1/J1 ~ X % ZI that captures all the twisting that occurs when
conjugating a function in C.(Jy, o) by onein C. (S, o). We call 0 the spectral action.

Theorem (A-Brownlowe-Sims 2024, A 2022)
If C*(Jt, o) is simple, then so is C*(Gt, o).
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m Let Gt be a minimal Deaconu—Renault groupoid with unit space X.

m Leto: S(Tz) — T be a continuous 2-cocycle.
m Let w: Pt x P+ — T be a bicharacter that vanishes on Z, and is “equivalent” to (7|j[2].
T

There is an action 0: §1/J1 ~ X % ZI that captures all the twisting that occurs when
conjugating a function in C.(Jy, o) by onein C. (S, o). We call 0 the spectral action.

Theorem (A-Brownlowe-Sims 2024, A 2022)
If C*(37, o) is simple, then so is C*(Gr, o). Moreover, C*(Jt, 0) = Co (X, C*(Pr, w)).

The twisted Deaconu—Renault groupoid C*-algebra C*(Gt, o) is simple if and only if the
spectral action © is minimal (in the sense that every orbit is dense in X x Z,).
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Twisted Steinberg algebras

Let G be an ample Hausdorff groupoid, and let R be a discrete commutative unital ring with
invertible elements R*.
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Twisted Steinberg algebras

Let G be an ample Hausdorff groupoid, and let R be a discrete commutative unital ring with
invertible elements R*. Let o: G2) — R* be a continuous 2-cocycle.

Let AgR(G, o) be the R-module Ag(G). Define a twisted convolution product and a twisted
involution in the same way that we defined these for C. (9, o).

Theorem (A—Clark—Courtney—Lin—McCormick—Ramagge 2022)

The above construction gives a x-algebra Ar (G, o) over R, called the twisted Steinberg
algebra of (G, o). Completing Ac, (G, o) with respect to the full/reduced norm gives the
full/reduced C*-algebra of (G, o).

Future work: Characterise simplicity of twisted Steinberg algebras of ample
Deaconu—Renault groupoids.
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Twisted groupoids

2-cocycles on discrete groups are in one-to-one correspondence with group extensions.
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Twisted groupoids

2-cocycles on discrete groups are in one-to-one correspondence with group extensions. A
twist (or twisted groupoid) € by T over a Hausdorff étale groupoid § is the groupoid
analogue of a group extension.

Example

Let G be a Hausdorff étale groupoid, and let o: §(2) — T be a continuous 2-cocycle. Give
s =G x T the product topology. Then £ is a Hausdorff groupoid under the operations

(o, W) (B, z) = (B, o, B) wz) and (o, w) = (a7t oo, 1) W)

for («, B) € G2 and w, z € T. In fact, & is a twist by T over G.

Unlike for groups, not every twisted groupoid is induced by a continuous 2-cocycle
[Kumjian 1986, ANSZ 2025].
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Twisted groupoid C*-algebras

Given a twist € by T over a Hausdorff étale groupoid G, we can construct full and reduced
twisted groupoid C*-algebras C*(S; &) and C*(; &).
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Twisted groupoid C*-algebras

Given a twist € by T over a Hausdorff étale groupoid G, we can construct full and reduced
twisted groupoid C*-algebras C*(S; &) and C*(; &).

If the twist & is induced by a continuous 2-cocycle o: G(2) — T, then these C*-algebras
coincide with C*(9, o) and C;(9, o), respectively.

Suppose that G is an ample Hausdorff groupoid, and let R be a commutative unital ring with
invertible elements R*.

In [ACCCLMRSS 2023], my coauthors and | introduced the notion of a discrete twist & by
R* over G, that doesn’t necessarily arise from a continuous R*-valued 2-cocycle on G.

We then defined an associated twisted Steinberg algebra Az (G; &), generalising those
defined using continuous 2-cocycles.
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Cartan subalgebras

Let A be a C*-algebra. A C*-subalgebra B C A is called a Cartan subalgebra if
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Cartan subalgebras

Definition
Let A be a C*-algebra. A C*-subalgebra B C A is called a Cartan subalgebra if

m B is maximal abelian;
m A is generated by the normalisers of B in A; and
m there is a faithful conditional expectation A — B.

Theorem (Li 2020)

Every classifiable C*-algebra has a Cartan subalgebra.
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Reconstruction of twisted groupoid C*-algebras

Kumjian—-Renault theory is the C*-algebraic analogue of Feldman—Moore theory for von
Neumann algebras.
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Kumjian—-Renault theory is the C*-algebraic analogue of Feldman—Moore theory for von
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Theorem (Kumjian 1986, Renault 2008)

If B is a Cartan subalgebra of a C*-algebra A, then there is a unique twisted groupoid (G, €)
and an isomorphism ¥: A — C%(G; &) such that W(B) = Co(G(?)).
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Reconstruction of twisted groupoid C*-algebras

Kumjian—-Renault theory is the C*-algebraic analogue of Feldman—Moore theory for von
Neumann algebras.

Theorem (Kumjian 1986, Renault 2008)

If B is a Cartan subalgebra of a C*-algebra A, then there is a unique twisted groupoid (G, €)
and an isomorphism W: A — C%(S; &) such that W¥(B) = Co(G'?)). The converse also holds
if G is Hausdorff, étale, and effective.

In particular, every classifiable C*-algebra is a twisted groupoid C*-algebra. However, not
every twisted groupoid C*-algebra is classifiable.

Open question: Is every C*-algebra a twisted groupoid C*-algebra?
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Reconstruction of twisted Steinberg algebras

Previous work:

m Proved analogues of Kumjian and Renault’s C*-algebraic reconstruction theorems for
twisted Steinberg algebras
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Reconstruction of twisted Steinberg algebras

Previous work:

m Proved analogues of Kumjian and Renault’s C*-algebraic reconstruction theorems for
twisted Steinberg algebras, by developing abstract-algebraic notions of Cartan pairs
and C*-diagonals [ACCCLMRSS 2023].

m Extended our reconstruction theorem to include discrete twists over non-effective
groupoids by removing the requirement of maximality of the abelian subalgebra
[ACCCLMRSS 2023]. Thus we improved on Kumjian—Renault theory in the
abstract-algebraic setting.

m Proved that an analogous extension of Kumjian—Renault theory is impossible in the
C*-algebraic setting [ABCCLMR 2024].

Current work: Prove existence and uniqueness theorems for abstract-algebraic Cartan pairs,
and extend the theory to cover R-rings rather than just R-algebras.
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