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Multidimensional patterns are universal across scales: from kilo- to
nano- metres



Many nonequilibrium systems in controlled settings also display
complicated patterns
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I System can display different patterns at different parameters
I Features: time varying, multiple length scales, localization,

symmetries



We assume that the underlying mechanism for pattern formation is
universal: Turing bifurcation

Nogare et. al., PLoS 2017

I A homogeneous state becomes unstable with change in parameter

I Initial perturbations grow and nonlinearities dampen this growth and
help form a pattern



Modelling pattern formation usually involves choosing a level of detail
and very often involves arriving at a governing PDE

Emmerich et. al., Adv. in Phys., 2012

Damasceno et. al., JCP 2017

Subramanian et. al., PRL 2016



A prototypical PDE for studying pattern formation

Reaction Diffusion equation:

∂U

∂t
= 4U +N [U] .

Swift-Hohenberg equation:

∂U

∂t
= µU − (1 +∇2)2U +N [U] .

I Where N is a (polynomial) nonlinear function

I The equations are nonlinear and infinite dimensional

Visual PDE



Complicated patterns observed in experiments can be analysed by
introducing a second length scale in the problem

I 12-fold quasipattern and superlattice
patterns observed in Faraday wave
experiment

I Ratio of two length scales,
0 < q < 1/2 – superlattice patterns
and 0.5 < q < 1 – quasipatterns

Lifshitz-Petrich model:

∂U

∂t
=

(
r1U − c(1 +∇2)2(q2 +∇2)2

+ QU2 − U3
)

Extension to model with two independent growth rates:

∂U

∂t
= LU + QU2 − U3



Designing a linear operator with two preferred length scales

σ(k) associated with L needs to satisfy the following constraints

I Reflection and rotation symmetry

I Choice of lengthscales

I Sharpness of the choice of lengthscales

I Large lengthscales are damped

I Independent growth rates at two lengthscales

These conditions amount to:

σ(k = 1) = r1, σ(k = q) = rq, σ(k = 0) = σ0,

dσ

dk
(k = 1) = 0,

dσ

dk
(k = q) = 0, σ(k) = σ(−k).

The resulting 8th order polynomial in k is

σ(k) =
k2(P(k)r1 + R(k)rq)

q4(1− q2)3
+
σ0

q4
(1− k2)2(q2 − k2)2

where P(k) = (k2(q2 − 3)− 2q2 + 4)(k2 − q2)2q4 and
R(k) = (k2(3q2 − 1) + 2q2 − 4q4)(k2 − 1)2.



Observed phenomena in pattern formation that we would like to
understand/explain: (i) Spatial localisation

Lloyd et al., 2008

Lloyd et al., 2008

Hill et al., 2022
Subramanian et al., 2018



Spatially localised patterns in 1D occur can be analysed using the
approach of spatial dynamics

Burke & Knobloch 2007

I At a steady solution, the PDE becomes a fourth order spatial ODE

I We can convert in into four first order ODEs for

ξ = (U,Uy ,Uyy ,Uyyy )T



Spatial dynamics system: ill-posed IVP, but we can analyse the
bifurcation structure

ξy = Aξ +N [ξ]

reversible with respect to the reverser

R : (U,Uy ,Uyy ,Uyyy )T → (U,−Uy ,Uyy ,−Uyyy )T

I The spatial dynamical system is conservative - energy functional
values remain constant

I Fronts connecting to the trivial state are only possible when the
energy functional corresponding to the patterned state also vanishes:
Maxwell point

I Unstable manifold of trivial state intersects the stable manifold of
the patterned state transversally within the zero level set of the
energy functional

I Homoclinic orbits bifurcating from such a heteroclinic connection
will exist over an open parameter interval

Avitabile et al. 2010



Two scenarios that can occur are the non-snaking and snaking
scenarios

Avitabile et al. 2010

I Heteroclinic cycles between two reversible equilibria lead to branches
of symmetric homoclinic orbits with vertical asymptote at Maxwell
point

I Heteroclinic cycles between an equilibrium and a reversible periodic
orbit lead to two branches of symmetric/asymmetric homoclinic
orbits that oscillate between two distinct parameter values



How can we extend a similar method to
analyse spatial localisation in 2D/3D?

Or to more complicated PDEs?



Some ideas so far...
I Core-Farfield decomposition for dihedral patterns:

Hill et al. 2021

I Analysis for a truly 2D pattern, even in a prototypical pattern
forming PDE requires new methods/bridges

I Long way from analysing snaking observed in fluid flows modelled
using Navier Stokes equation

Schneider et. al., 2010



Observed phenomena in pattern formation that we would like to
understand/explain: (ii) Pinning of defects

ut = µu − (1 +∇2)2u + Qu2 − u3 µ = 0.1 Q = 0.5

I Hexagons are preferred when quadratic nonlinearity is activated.

I In the nonlinear phase, patches of hexagons exhibit penta-hepta
defects, which are destroyed until a uniform pattern of hexagons
remain.



Defects can be classified into two groups: topological defects and
non-topological defects

Griffin & Spaldin 2017

Defects are studied in an amplitude-phase formulation where U is written
as

U = ε1/2
3∑

j=1

Bjexp(i(kj +4kj )r) + c.c

I Topological defects are associated with zeros of the amplitudes Bj

where the phase becomes undefined

I Topological defects need to interact with another defect in order to
be eliminated

I Non-topological defects (e.g. Penta-Hepta defects) were thought to
‘heal’ by themselves - without interactions with another defect



However, defects found at grain boundaries can get pinned to the
background

Boissoniére et al. 2021

Subramanian et al. 2021



We look at the Swift-Hohenberg model

Reminding ourselves of the dynamical equation for u

∂u

∂t
= µu − (1 +∇2)2u + Qu2 − u3

associated with a free energy,

F [u] =

∫ [
−1

2
µu2 +

1

2
u(1 +∇2)2u − 1

3
Qu3 +

1

4
u4

]
dx

I We consider a periodic domain in 2D of length 30 wavelengths of the
characteristic mode (k = 1) and consider a system with Q = 0.75

I Time evolutions are obtained pseudospectrally using second-order
exponential time differencing

I Pseudo-arclength numerical continuation is used to obtain the
bifurcation behaviour for varying µ



Choosing one extended state as the reference pattern
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We place a patch of u10 with a background of u01 as an initial guess
for numerical continuation

We obtain multiple equilibria at the same parameters that have different
size/shape of the patch

Viewing the ufil field shows the differences more clearly



Where are the penta-hepta defects located?
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States with defects exist over a wide range of parameters
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I How can we explain the snaking of non-topological defects?

I What is the smallest stationary stable defect that can exist?



Pinning of defects in 1D is currently being analysed

I Defects have been obtained between two patterned equilibria
numerically

Knobloch et. al., 2019

I Current work (by DJL) is looking to use spatial dynamics to analyse
this as a Periodic-to-Periodic homoclinic connection



How can we extend a similar method to
analyse pinning of defects in 2D/3D?



Computer assisted proofs (CAPs) in nonlinear analysis

We want to construct algorithms that provide an approximate solution to
a problem together with precise and possibly efficient bounds within
which a rigorous exact solution is guaranteed to exist.

This area uses ideas from

I scientific computing

I functional analysis

I approximation theory

I numerical analysis

I topological methods

Consider a general nonlinear problem

F(x) = 0 .

Based on slides from the SIAM Gene Golub Summer School 2025



To solve such a general nonlinear problem in a Banach space X exactly
is impossible

The alternative is to find small balls in which it is demonstrated that a
unique solution exists

I Let x̄ be a numerical approximation to F(x) = 0 using a finite
dimensional reduction

I Construct a linear operator A that is the approximate inverse of
DF(x)

I Verify that A is an injective linear operator

I Define a Newton-like operator T (x) = x −AF(x) about the
numerical approximation x̄

I Consider Bx̄ (r) ∈ X , the closed ball of radius r centered at x̄

I Find a radius r > 0 such that the operator T is a contraction
mapping

Based on slides from the SIAM Gene Golub Summer School 2025
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In summary, we have looked at some current directions in the analysis
of multi-dimensional patterns

I Analysis of nonlinear PDEs arising in pattern formation needs
expertise in multiple areas of mathematics - need for intradisciplinary
bridges

I Observations of spatial localisation and pinning of defects in 2D/3D
are very much open problems

I Coming up on Wednesday:

I (i) an outline of CAP for the Swift-Hohenberg equation and

I (ii) a detour to analysing codimension-2 bifurcations using
computational algebraic geometry


