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Multidimensional patterns are universal across scales: from kilo- to

nano- metres
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Many nonequilibrium systems in controlled settings also display
complicated patterns
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» System can display different patterns at different parameters
» Features: time varying, multiple length scales, localization,
symmetries



We assume that the underlying mechanism for pattern formation is
universal: Turing bifurcation

Activator =====: Inhibitor

Nogare et. al., PLoS 2017
» A homogeneous state becomes unstable with change in parameter

» Initial perturbations grow and nonlinearities dampen this growth and
help form a pattern



Modelling pattern formation usually involves choosing a level of detail
and very often involves arriving at a governing PDE
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A prototypical PDE for studying pattern formation
Reaction Diffusion equation:

ou
5p = AU

Swift-Hohenberg equation:

—(1+V»H2U +NU.

Swift-Hohenberg Fitz-Hugh Nagumo Cahn-Hilliard

» Where A is a (polynomial) nonlinear function
» The equations are nonlinear and infinite dimensional

Visual PDE



Complicated patterns observed in experiments can be analysed by
introducing a second length scale in the problem
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0 < g < 1/2 — superlattice patterns

and 0.5 < g < 1 — quasipatterns
Lifshitz-Petrich model:
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Extension to model with two independent growth rates:
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Designing a linear operator with two preferred length scales
o(k) associated with £ needs to satisfy the following constraints
» Reflection and rotation symmetry
» Choice of lengthscales
» Sharpness of the choice of lengthscales
» Large lengthscales are damped
» Independent growth rates at two lengthscales

These conditions amount to:

ok=1) = n, olk=q)=ry o(k=0)=o0y,
do do
J(k =1) = 0, ﬁ(k =q)=0, o(k)=o(—k).

The resulting 8 order polynomial in k is

_ K*(P(k)r+ R(K)rq)
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where P(k) = (k*(¢” - 3) — 2¢° + 4)(k* — ¢°)?¢" and
R(k) = (K*(3¢° — 1) +2¢° — 4q*)(k* — 1)°.



Observed phenomena in pattern formation that we would like to
understand/explain: (i) Spatial localisation

Lloyd et al., 2008
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Spatially localised patterns in 1D occur can be analysed using the
approach of spatial dynamics

Burke & Knobloch 2007

» At a steady solution, the PDE becomes a fourth order spatial ODE

» We can convert in into four first order ODEs for

§= (U, Uya Uyyv Uyyy)T



Spatial dynamics system: ill-posed IVP, but we can analyse the
bifurcation structure
& = AL JF-/\/[f]

reversible with respect to the reverser
R: (U, Uy, Uy, Uyyy)T = (U,=U,, Uy, *Uyyy)T

» The spatial dynamical system is conservative - energy functional
values remain constant

» Fronts connecting to the trivial state are only possible when the
energy functional corresponding to the patterned state also vanishes:
Maxwell point

» Unstable manifold of trivial state intersects the stable manifold of
the patterned state transversally within the zero level set of the
energy functional

» Homoclinic orbits bifurcating from such a heteroclinic connection
will exist over an open parameter interval

Avitabile et al. 2010



Two scenarios that can occur are the non-snaking and snaking

scenarios
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» Heteroclinic cycles between two reversible equilibria lead to branches
of symmetric homoclinic orbits with vertical asymptote at Maxwell
point

» Heteroclinic cycles between an equilibrium and a reversible periodic
orbit lead to two branches of symmetric/asymmetric homoclinic
orbits that oscillate between two distinct parameter values
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Avitabile et al. 2010



How can we extend a similar method to
analyse spatial localisation in 2D/3D?
Or to more complicated PDEs?

By Frits Ahlefeldt



Some ideas so far...
» Core-Farfield decomposition for dihedral patterns:

)

Core Manifold: W™ (¢) / Far-field Manifold: W, (<)

Hill et al. 2021
» Analysis for a truly 2D pattern, even in a prototypical pattern
forming PDE requires new methods/bridges
» Long way from analysing snaking observed in fluid flows modelled
using Navier Stokes equation

Schneider et. al., 2010



Observed phenomena in pattern formation that we would like to
understand /explain: (ii) Pinning of defects

ur = pu— (1+V3)>%u+ Qu? — ° uw=01 Q=05

» Hexagons are preferred when quadratic nonlinearity is activated.

» In the nonlinear phase, patches of hexagons exhibit penta-hepta
defects, which are destroyed until a uniform pattern of hexagons
remain.



Defects can be classified into two groups: topological defects and
non-topological defects
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Griffin & Spaldin 2017

Defects are studied in an amplitude-phase formulation where U is written
as

3
U=e/? Z Bjexp(i(kj + Akj)r) +c.c
j=1
» Topological defects are associated with zeros of the amplitudes B;
where the phase becomes undefined

» Topological defects need to interact with another defect in order to
be eliminated

> Non-topological defects (e.g. Penta-Hepta defects) were thought to
‘heal’ by themselves - without interactions with another defect



However, defects found at grain boundaries can get pinned to the
background

Boissoniére et al. 2021

Subramanian et al. 2021



We look at the Swift-Hohenberg model

Reminding ourselves of the dynamical equation for u

%:uu7(1+v2)2u+ Qu* — u®

associated with a free energy,

1 1 1 1
f[u]—/[—2uu2+2u(1+V2)2u—3Qu3+4u4 dx

» We consider a periodic domain in 2D of length 30 wavelengths of the
characteristic mode (k = 1) and consider a system with @ = 0.75

» Time evolutions are obtained pseudospectrally using second-order
exponential time differencing

» Pseudo-arclength numerical continuation is used to obtain the
bifurcation behaviour for varying p



Choosing one extended state as the reference pattern
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Spectral filter: P = 0, COmpohents of & € RLV (uo1) ,
1, otherwise.

Measure: rms(ug) = %/[IFFF-[‘(PL?)]2 dA



We place a patch of uyg with a background of wp; as an initial guess
for numerical continuation

We obtain multiple equilibria at the same parameters that have different
size/shape of the patch

Viewing the ug field shows the differences more clearly




Where are the penta-hepta defects located?




States with defects exist over a wide range of parameters
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» How can we explain the snaking of non-topological defects?
» What is the smallest stationary stable defect that can exist?



Pinning of defects in 1D is currently being analysed

» Defects have been obtained between two patterned equilibria

numerically
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» Current work (by DJL) is looking to use spatial dynamics to analyse
this as a Periodic-to-Periodic homoclinic connection
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Knobloch et. al., 2019



How can we extend a similar method to
analyse pinning of defects in 2D/3D?
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Computer assisted proofs (CAPs) in nonlinear analysis

We want to construct algorithms that provide an approximate solution to
a problem together with precise and possibly efficient bounds within
which a rigorous exact solution is guaranteed to exist.

This area uses ideas from
» scientific computing
» functional analysis
» approximation theory

» numerical analysis

>

topological methods

Consider a general nonlinear problem

F(x)=0.

Based on slides from the SIAM Gene Golub Summer School 2025



To solve such a general nonlinear problem in a Banach space X exactly
is impossible

The alternative is to find small balls in which it is demonstrated that a

unique solution exists

> Let X be a numerical approximation to F(x) = 0 using a finite
dimensional reduction
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To solve such a general nonlinear problem in a Banach space X exactly
is impossible

The alternative is to find small balls in which it is demonstrated that a

unique solution exists

> Let X be a numerical approximation to F(x) = 0 using a finite
dimensional reduction

» Construct a linear operator A that is the approximate inverse of
DF(x)

> Verify that A is an injective linear operator

> Define a Newton-like operator T(x) = x — AF(x) about the
numerical approximation X

» Consider Bx(r) € X, the closed ball of radius r centered at X
» Find a radius r > 0 such that the operator T is a contraction

mapping

Based on slides from the SIAM Gene Golub Summer School 2025



In summary, we have looked at some current directions in the analysis
of multi-dimensional patterns

» Analysis of nonlinear PDEs arising in pattern formation needs
expertise in multiple areas of mathematics - need for intradisciplinary
bridges

» Observations of spatial localisation and pinning of defects in 2D/3D
are very much open problems

» Coming up on Wednesday:
» (i) an outline of CAP for the Swift-Hohenberg equation and

» (ii) a detour to analysing codimension-2 bifurcations using
computational algebraic geometry



