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|
Recap

Definition (Cayley graph)

For a group G and symmetric subset S C G, the Cayley graph Gs has vertex set
G and distinct x, y are adjacent if xy~! € S.

Given p € (0,1), the random Cayley graphs G(p) is the Cayley graph Gs where
each {g, g !} is included independently in S with probability p.
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Recap

Definition (Cayley graph)

For a group G and symmetric subset S C G, the Cayley graph Gs has vertex set
G and distinct x, y are adjacent if xy~! € S.

Given p € (0,1), the random Cayley graphs G(p) is the Cayley graph Gs where
each {g, g !} is included independently in S with probability p.

Theorem (Conlon-Fox-P.-Yepremyan '24)

With high probability, the independence and clique number of a uniform random
Cayley graph on any group G of order N is O(log N log log ).

First moment of large independent sets in random Cayley graphs <> Counting
sets with small doubling |[AA~L|/|A.
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|
Recap

Definition (Cayley graph)

For a group G and symmetric subset S C G, the Cayley graph Gs has vertex set
G and distinct x, y are adjacent if xy~! € S.

Given p € (0,1), the random Cayley graphs G(p) is the Cayley graph Gs where
each {g, g !} is included independently in S with probability p.

Theorem (Conlon-Fox-P.-Yepremyan '24)

With high probability, the independence and clique number of a uniform random
Cayley graph on any group G of order N is O(log N log log ).

First moment of large independent sets in random Cayley graphs <> Counting
sets with small doubling |[AA~L|/|A.
Theorem (Conlon-Fox-P.-Yepremyan '24)

In any group G of order N, the number of subsets A C G with |A| = n and
|AA=Y| < Kn is at most NC(K+loen) (CK)n.
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Recap

Theorem (Conlon-Fox-P.-Yepremyan '24)

In any group G of order N, the number of subsets A C G with |A| = n and
|AA=L| < Kn is at most NC(K+loen)(CK)m,

Proof via the main combinatorial lemma.
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|
Recap

Theorem (Conlon-Fox-P.-Yepremyan '24)

In any group G of order N, the number of subsets A C G with |A| = n and
|AA=L| < Kn is at most NC(K+loen)(CK)m,

Proof via the main combinatorial lemma.

Theorem (Fox-P. '25+)

If G is an abelian group with exponent r and A C G is so that |A+ Al < K|A
then A is contained in subgroup H of size |H| < r(2te(W)K|A|.

7

In particular, Ruzsa's conjecture holds.
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Recap

Theorem (Conlon-Fox-P.-Yepremyan '24)

In any group G of order N, the number of subsets A C G with |A| = n and
|AA=L| < Kn is at most NC(K+loen)(CK)m,

Proof via the main combinatorial lemma.

Theorem (Fox-P. '25+)

If G is an abelian group with exponent r and A C G is so that |A+ Al < K|A
then A is contained in subgroup H of size |H| < r(2te(W)K|A|.

7

In particular, Ruzsa's conjecture holds.

Further applications:
@ Dimension of sets with small doubling
@ Robust Freiman-Ruzsa lemma

@ Random sumset extractors
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Perspective

Combinatorial perspective: Main combinatorial lemma identifies novel
combinatorial structures underlying sets with small doubling.
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|
Perspective

Combinatorial perspective: Main combinatorial lemma identifies novel
combinatorial structures underlying sets with small doubling.

New combinatorial approach to additive combinatorics:
@ Main combinatorial lemma: expanding structures in sets with small doubling.

@ Refinement: Use expanding structures to probe information about the entire
set.
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Perspective: Instead of zooming in on explicit structures inside the set, the
combinatorial lemma provides first a template that is “as random-like as possible”.
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Perspective: Instead of zooming in on explicit structures inside the set, the
combinatorial lemma provides first a template that is “as random-like as possible”.

@ The proof follows from an intricate random exploration process.
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Perspective: Instead of zooming in on explicit structures inside the set, the
combinatorial lemma provides first a template that is “as random-like as possible”.

@ The proof follows from an intricate random exploration process.
Robust and applicable in wide generality.

[ IVEL N o BV I (ST TTNER L SN SN P DIEME  Additive combinatorics: Probabilistic perspective NZMRI - January 2026 5/42



Alon's conjecture - Going beyond uniform random
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Alon’s conjecture

Conjecture (Alon '89)

There is a constant C such that every finite group has a Cayley graph which is
C-Ramsey.
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Alon’s conjecture - Going beyond uniform random

Over JFg, a uniformly random Cayley graph is not Ramsey w.h.p.
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|
Alon's conjecture - Going beyond uniform random

Over }Fg, a uniformly random Cayley graph is not Ramsey w.h.p.

We define an alternative distribution of random Cayley graphs to “remove” the
problematic cliques.

Theorem (Conlon-Fox-P.-Yepremyan '24)

For p > 5, there exists Cayley graphs over Fg with clique and independence
number (2 + o(1)) log, N where N = p¢.
For p =1 (mod 4), these Cayley graphs are self-complementary.

Answer a question of Alon and Orlitsky ('95) motivated by zero-error capacity and
dual-source coding.
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Alon's conjecture - Going beyond uniform random

Over Fg, a uniformly random Cayley graph is not Ramsey w.h.p.

We define an alternative distribution of random Cayley graphs to “remove” the
problematic cliques.

Theorem (Conlon-Fox-P.-Yepremyan '24)

For p > 5, there exists Cayley graphs over Fg with clique and independence
number (2 + o(1)) log, N where N = p¢.
For p =1 (mod 4), these Cayley graphs are self-complementary.

Answer a question of Alon and Orlitsky ('95) motivated by zero-error capacity and
dual-source coding.

Theorem (Conlon-Fox-P.-Yepremyan '24)

For almost all N, all abelian groups G of order N have a Cayley graph which is
C-Ramsey.
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Alon's conjecture - Going beyond uniform random

Over Fg, a uniformly random Cayley graph is not Ramsey w.h.p.

We define an alternative distribution of random Cayley graphs to “remove” the
problematic cliques.

Theorem (Conlon-Fox-P.-Yepremyan '24)

For p > 5, there exists Cayley graphs over Fg with clique and independence
number (2 + o(1)) log, N where N = p¢.
For p =1 (mod 4), these Cayley graphs are self-complementary.

Answer a question of Alon and Orlitsky ('95) motivated by zero-error capacity and
dual-source coding.

Theorem (Conlon-Fox-P.-Yepremyan '24)

For almost all N, all abelian groups G of order N have a Cayley graph which is
C-Ramsey.

Recent generalization to all groups of order coprime to 6 by Schildkraut.
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Dependent random graphs
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New direction: Dependent random graphs

The combinatorial approach to clique number of dense random Cayley graphs
suggests intriguing universal behaviors in general random graph models with
significant dependencies.
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New direction: Dependent random graphs

The combinatorial approach to clique number of dense random Cayley graphs
suggests intriguing universal behaviors in general random graph models with
significant dependencies.

Consider an edge-coloring ¢ of a complete graph, where each color class has
degree at most A.
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New direction: Dependent random graphs

The combinatorial approach to clique number of dense random Cayley graphs
suggests intriguing universal behaviors in general random graph models with
significant dependencies.

Consider an edge-coloring ¢ of a complete graph, where each color class has
degree at most A.

Definition (Random entangled graph)

An entangled graph is the edge-union of some of the color classes.
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New direction: Dependent random graphs

The combinatorial approach to clique number of dense random Cayley graphs
suggests intriguing universal behaviors in general random graph models with
significant dependencies.

Consider an edge-coloring ¢ of a complete graph, where each color class has
degree at most A.

Definition (Random entangled graph)

An entangled graph is the edge-union of some of the color classes.

The random entangled graph G.(p) is formed by including each color class with
probability p independently.
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New direction: Dependent random graphs

The combinatorial approach to clique number of dense random Cayley graphs
suggests intriguing universal behaviors in general random graph models with
significant dependencies.

Consider an edge-coloring ¢ of a complete graph, where each color class has
degree at most A.
Definition (Random entangled graph)

An entangled graph is the edge-union of some of the color classes.

The random entangled graph G.(p) is formed by including each color class with
probability p independently.

Examples:
@ Erd6s-Rényi random graphs.
@ Random Cayley graphs.
e Random Latin square graphs: Color class C, = {{i,j} : Lj = k} for a Latin
square L.
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New direction: Random entangled graphs

Theorem 1 (Conlon-Fox-P.-Yepremyan '24)

In a A-bounded edge-coloring of the complete graph on N vertices, the number of
n-vertex subsets with at most Kn colors is at most

NCAKHog ) (CAK)",
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New direction: Random entangled graphs

Theorem 1 (Conlon-Fox-P.-Yepremyan '24)

In a A-bounded edge-coloring of the complete graph on N vertices, the number of
n-vertex subsets with at most Kn colors is at most

NCAKHog ) (CAK)",

Theorem 2 (Conlon-Fox-P.-Yepremyan '24)
If an edge-coloring ¢ of Kl is A-bounded, then with high probability,
a(Ge(p)) = Op a(log Nloglog N).
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New direction: Random entangled graphs

Theorem 1 (Conlon-Fox-P.-Yepremyan '24)

In a A-bounded edge-coloring of the complete graph on N vertices, the number of
n-vertex subsets with at most Kn colors is at most

NCAKHog ) (CAK)",

Theorem 2 (Conlon-Fox-P.-Yepremyan '24)
If an edge-coloring ¢ of Kl is A-bounded, then with high probability,
a(Ge(p)) = Op a(log Nloglog N).

@ From Theorem 1, a careful union bound yields Theorem 2.

@ Theorem 2 solves a conjecture of Christofides and Markstrom ('11) on the
independence number of random Latin square graphs.
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New direction: A-independent random graphs
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New direction: A-independent random graphs

How much independence is needed?
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New direction: A-independent random graphs

How much independence is needed?
The phenomena extend to a significantly broader class of random graphs.
Definition (A-independent graph)

An ensemble of random graphs is said to be A-independent if for each edge e,
there is a graph G, of maximum degree A such that the appearance of e is
independent of all edges outside G,.
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New direction: A-independent random graphs

How much independence is needed?
The phenomena extend to a significantly broader class of random graphs.
Definition (A-independent graph)

An ensemble of random graphs is said to be A-independent if for each edge e,
there is a graph G, of maximum degree A such that the appearance of e is
independent of all edges outside G,.

Significant weakening of usual condition in the Lovédsz Local Lemmal
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New direction: A-independent random graphs

How much independence is needed?
The phenomena extend to a significantly broader class of random graphs.
Definition (A-independent graph)

An ensemble of random graphs is said to be A-independent if for each edge e,
there is a graph G, of maximum degree A such that the appearance of e is
independent of all edges outside G,.

Significant weakening of usual condition in the Lovédsz Local Lemmal

All random entangled graphs defined by a A-bounded edge coloring are
A-independent random graphs.
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New direction: A-independent random graphs

How much independence is needed?
The phenomena extend to a significantly broader class of random graphs.
Definition (A-independent graph)

An ensemble of random graphs is said to be A-independent if for each edge e,
there is a graph G, of maximum degree A such that the appearance of e is
independent of all edges outside G..

Significant weakening of usual condition in the Lovédsz Local Lemmal

All random entangled graphs defined by a A-bounded edge coloring are
A-independent random graphs.

Theorem (Conlon-Fox-P.-Yepremyan '26+)

Consider a A-independent random graph G where the probability of appearance
of each edge is ©(p). Then, with high probability,

a(G) = O, a(log Nloglog N).
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New direction: A-independent random graphs

Definition (A-independent graph)

An ensemble of random graphs is said to be A-independent if for each edge e,
there is a graph G, of maximum degree A such that the appearance of e is
independent of all edges outside G,.
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New direction: A-independent random graphs

Definition (A-independent graph)

An ensemble of random graphs is said to be A-independent if for each edge e,
there is a graph G, of maximum degree A such that the appearance of e is
independent of all edges outside Ge.

Theorem (Conlon-Fox-P.-Yepremyan '26+)

Consider a symmetric A-independent random graph G where the probability of
appearance of each edge is p. Then, with high probability, all nontrivial
eigenvalues of G are bounded by O(+/pN log N).
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New direction: A-independent random graphs

Definition (A-independent graph)

An ensemble of random graphs is said to be A-independent if for each edge e,
there is a graph G, of maximum degree A such that the appearance of e is
independent of all edges outside Ge.

Theorem (Conlon-Fox-P.-Yepremyan '26+)

Consider a symmetric A-independent random graph G where the probability of
appearance of each edge is p. Then, with high probability, all nontrivial
eigenvalues of G are bounded by O(+/pN log N).

As a corollary, we obtain that G is Hamiltonian with high probability for
p > log N.
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New direction: A-independent random graphs

Definition (A-independent graph)

An ensemble of random graphs is said to be A-independent if for each edge e,
there is a graph G, of maximum degree A such that the appearance of e is
independent of all edges outside Ge.

Theorem (Conlon-Fox-P.-Yepremyan '26+)

Consider a symmetric A-independent random graph G where the probability of
appearance of each edge is p. Then, with high probability, all nontrivial
eigenvalues of G are bounded by O(+/pN log N).

As a corollary, we obtain that G is Hamiltonian with high probability for
p > log N.
Open direction

Study interesting properties of A-independent graphs (random entangled graphs,
random Cayley graphs).
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Sparse random Cayley graphs & First moment obstructions
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Sparse random Cayley graphs

Definition (Cayley sum graph)

For an abelian group G and subset S C G, the Cayley sum graph Gs has vertex
set G and distinct x, y are adjacent if x +y € S.
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|
Sparse random Cayley graphs

Definition (Cayley sum graph)

For an abelian group G and subset S C G, the Cayley sum graph Gs has vertex
set G and distinct x, y are adjacent if x +y € S.

Given p € (0,1), the random Cayley sum graph G(p) is the Cayley sum graph Gs
where each x is included independently in S with probability p.
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Sparse random Cayley graphs

Definition (Cayley sum graph)

For an abelian group G and subset S C G, the Cayley sum graph Gs has vertex
set G and distinct x, y are adjacent if x +y € S.

Given p € (0,1), the random Cayley sum graph G(p) is the Cayley sum graph Gs
where each x is included independently in S with probability p.

Conjecture (Alon '07, '13)

The independence number of G(p) is with high probability é(p’l).

The random Cayley sum graph G(p) behave like a random pN-regular graph.
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First moment obstructions and Additive combinatorics

Naive first moment for independent sets in Cayley sum graphs:

E[# independent sets of size t in G(p)] = Z (1—p)A+Al ~ Z exp(—p|A+A]).
|A|l=t |A|l=t
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First moment obstructions and Additive combinatorics

Naive first moment for independent sets in Cayley sum graphs:

E[# independent sets of size t in G(p)] = Z (1—p)A+Al ~ Z exp(—p|A+A]).
|A|l=t |A|l=t

Large for any t = o(|G|) and p = o(1): Exponentially many |A| = t with
|A+ A| = O(t).
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First moment obstructions and Additive combinatorics

Naive first moment for independent sets in Cayley sum graphs:

E[# independent sets of size t in G(p)] = Z (1—p)A+Al ~ Z exp(—p|A+A]).
|A|l=t |A|l=t

Large for any t = o(|G|) and p = o(1): Exponentially many |A| = t with
|A+ A| = O(t).

Need better First moment obstructions.
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First moment obstructions

General setup:
o Finite set X.
e Collection of target sets H C 2X.

@ Random subset X,: each element of X included independently with
probability p.

[z YA NELN S ET N (IR TGIENNE QNI EINEIENE  Additive combinatorics: Probabilistic perspective NZMRI - January 2026 17 /42



First moment obstructions

General setup:
o Finite set X.
o Collection of target sets H C 2X.

@ Random subset X,: each element of X included independently with
probability p.

Denote (H) the collection of subsets W € 2% containing at least one target set
He™H:

Question
Does X, contain a target set H € H?
What are obstructions (certificates) which imply that P(X, € (H)) is small?
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First moment obstructions

Example:
o X = (M), then X, ~ G(N, p).
@ H is the collection of isomorphic copies of a graph H on N vertices.
o In Erdés' case, H is taken to be a clique on n = 2log, N vertices.

[z YA NELN S ET N (IR TGIEN NS QNI EINEIENE  Additive combinatorics: Probabilistic perspective NZMRI - January 2026 18 /42



First moment obstructions

Example:
o X = (M), then X, ~ G(N, p).
@ H is the collection of isomorphic copies of a graph H on N vertices.
o In Erdés' case, H is taken to be a clique on n = 2log, N vertices.

Naive obstruction:

dopHl<12 = P(X e (M) <1/2
HeH
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First moment obstructions

Example:
o X = (M), then X, ~ G(N, p).
@ H is the collection of isomorphic copies of a graph H on N vertices.
o In Erdés' case, H is taken to be a clique on n = 2log, N vertices.

Naive obstruction:

dopHl<12 = P(X e (M) <1/2
HeH

Example: Erd8s’ proof that random graphs G(N,1/2) do not have cliques of size
2log, V.
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First moment obstructions

Definition
We say that G is a cover for H if every H € H contains some G € G. J
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First moment obstructions

Definition

We say that G is a cover for H if every H € H contains some G € G. J

First moment obstruction:

Y oplfl<1/2 = P(X, € (W) <P(X, € (G) < 1/2.
Geg
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First moment obstructions

Definition

We say that G is a cover for H if every H € H contains some G € G. J

First moment obstruction:

Y oplfl<1/2 = P(X, € (W) <P(X, € (G) < 1/2.
Geg
Definition

We call a cover G with » ¢ p!¢l < 1/2 a first moment obstruction for .
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First moment obstructions

Definition
We say that G is a cover for H if every H € H contains some G € G. J

First moment obstruction:
Y oplfl<1/2 = P(X, € (W) <P(X, € (G) < 1/2.
Geg
Definition
We call a cover G with » ¢ p!¢l < 1/2 a first moment obstruction for 7. We
say that H is p-small if a first moment obstruction exists.
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First moment obstructions

Definition
We say that G is a cover for H if every H € H contains some G € G. J

First moment obstruction:
Y oplfl<1/2 = P(X, € (W) <P(X, € (G) < 1/2.
Geg
Definition
We call a cover G with » ¢ p!¢l < 1/2 a first moment obstruction for 7. We
say that H is p-small if a first moment obstruction exists.

If H is p-small, then P(X, € (H)) < 1/2.
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First moment obstructions

Example:
o X = (M), then X, ~ G(N, p).

@ 7 is the collection of isomorphic copies of a graph H on N vertices.
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First moment obstructions

Example:
o X = (M), then X, ~ G(N, p).

@ 7 is the collection of isomorphic copies of a graph H on N vertices.

Example: H = {copies of Ku}.

@ “Naive” cover: H is a cover for itself, so H is
(cn—2/3)-small.

Figure 1: H= K,
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First moment obstructions

Example:
o X = (M), then X, ~ G(N, p).

@ 7 is the collection of isomorphic copies of a graph H on N vertices.

Example: H = {copies of Ku}.

@ “Naive” cover: H is a cover for itself, so H is
(cn—2/3)-small.

@ For p < cn2/3, there is a first moment
obstruction showing that
P(G(N, p) contains Ky) < 1/2.
Figure 1: H= K,
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First moment obstructions

Example:
o X = (M), then X, ~ G(N, p).
@ 7 is the collection of isomorphic copies of a graph H on N vertices.

Example: H = {copies of Ku}.

@ “Naive” cover: H is a cover for itself, so H is
(cn—2/3)-small.

@ For p < cn2/3, there is a first moment
obstruction showing that
P(G(N, p) contains Ky) < 1/2.

Figure 1: H= K,
@ H is not Cn—2/3-small, and

P(G(N, Cn=2/3) contains Ky) > 1/2.
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@ H is the collection of isomorphic copies of a graph H on N vertices.
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First moment obstructions

Example:
o X = (M), then X, ~ G(N, p).
@ H is the collection of isomorphic copies of a graph H on N vertices.
Example: H = {copies of H}.

o “Naive” cover: H is a cover for itself, so H is
(cn—3/4)-small.

Figure 2: H = K4 with 2
pendant edges
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First moment obstructions

Example:
o X = (M), then X, ~ G(N, p).
@ H is the collection of isomorphic copies of a graph H on N vertices.
Example: H = {copies of H}.

o “Naive” cover: H is a cover for itself, so H is
(cn—3/4)-small.

@ Better covers: G consisting of copies of Kj:
H is (cn—?/3)-small.

Figure 2: H = K4 with 2
pendant edges
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First moment obstructions

Example:
o X = (M), then X, ~ G(N, p).
@ H is the collection of isomorphic copies of a graph H on N vertices.

Example: H = {copies of H}.

o “Naive” cover: H is a cover for itself, so H is
(cn—3/4)-small.

@ Better covers: G consisting of copies of Kj:
H is (cn—?/3)-small.

e For p< cn—2/3, there is a first moment
obstruction showing that
P(G(N, p) contains H) < 1/2.

Figure 2: H = K4 with 2
pendant edges
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First moment obstructions

Example:
o X = (M), then X, ~ G(N, p).
@ H is the collection of isomorphic copies of a graph H on N vertices.

Example: H = {copies of H}.

o “Naive” cover: H is a cover for itself, so H is
(cn—3/4)-small.

@ Better covers: G consisting of copies of Kj:
H is (cn—?/3)-small.

e For p< cn—2/3, there is a first moment

obstruction showing that
P(G(N, p) contains H) < 1/2.

Figure 2: H = K4 with 2
pendant edges

@ 7 is not Cn=2/3-small, and
P(G(N, Cn=2/3) contains H) > 1/2.
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o X = (M), then X, ~ G(N, p).

@ H is the collection of isomorphic copies of a graph H on N vertices.
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First moment obstructions

Example:
o X = (M), then X, ~ G(N, p).

@ H is the collection of isomorphic copies of a graph H on N vertices.

Example: H = {copies of H}.

‘ ‘ g @ “Naive” cover: H is a cover for itself, so H is
e (c/n)-small.

Figure 3:
H = Hamiltonian cycle
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First moment obstructions

Example:
o X = (M), then X, ~ G(N, p).

@ H is the collection of isomorphic copies of a graph H on N vertices.
Example: H = {copies of H}.
‘ ‘ g @ “Naive” cover: H is a cover for itself, so H is
a (c/n)-small.
‘ ‘ @ For p < ¢/n, there is a first moment
Q obstruction showing that
P(G(N, p) contains H) < 1/2.

Figure 3:
H = Hamiltonian cycle
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First moment obstructions

Example:
o X = (M), then X, ~ G(N, p).
@ H is the collection of isomorphic copies of a graph H on N vertices.

Example: H = {copies of H}.

‘ ‘ g o “Naive” cover: H is a cover for itself, so H is
e (c/n)-small.
‘ ‘ e For p < c¢/n, there is a first moment
Q obstruction showing that

P(G(N, p) contains H) < 1/2.

Figure 3:

H = Hamiltonian cycle @ Other covers: all edges adjacent to a fixed

vertex.

e H is not C/n-small, and
P(G(N, C(log n)/n) contains H) > 1/2.
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From Obstructions to Structures

If H is p-small, then P(X, € (H)) < 1/2.
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imply the appearance of structure?
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From Obstructions to Structures

If H is p-small, then P(X, € (H)) < 1/2.

What about the other direction? Does inexistence of first moment obstructions
imply the appearance of structure?

New philosophy:

Inexistence of first moment obstructions implies appearance of structure.
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From Obstructions to Structures

If H is p-small, then P(X, € (H)) < 1/2.
What about the other direction? Does inexistence of first moment obstructions
imply the appearance of structure?
New philosophy:
Inexistence of first moment obstructions implies appearance of structure.

Conjecture (Kahn-Kalai conjecture '06)
If H is not p-small, then P(Xcpiog x| € (H)) > 1/2. J
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From Obstructions to Structures

If H is p-small, then P(X, € (H)) < 1/2.

What about the other direction? Does inexistence of first moment obstructions
imply the appearance of structure?
New philosophy:

Inexistence of first moment obstructions implies appearance of structure.

Conjecture (Kahn-Kalai conjecture '06)

If H is not p-small, then P(Xcpiog x| € (H)) > 1/2. J
Theorem (Park-P. '24, Kahn-Kalai conjecture)

If H be not p-small with { = maxpey |H|, then P(Xcpioge € (H)) > 1/2. J
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From Obstructions to Structures

If H is p-small, then P(X, € (H)) < 1/2.
What about the other direction? Does inexistence of first moment obstructions
imply the appearance of structure?
New philosophy:

Inexistence of first moment obstructions implies appearance of structure.

Conjecture (Kahn-Kalai conjecture '06)

If H is not p-small, then P(Xcpiog x| € (H)) > 1/2. J
Theorem (Park-P. '24, Kahn-Kalai conjecture)

If H be not p-small with { = maxpey |H|, then P(Xcpioge € (H)) > 1/2. J

Determining the threshold where target structures emerge is essentially the same
as detecting existence of First moment obstructions.
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From Obstructions to Structures

If H is p-small, then P(X, € (H)) < 1/2.
What about the other direction? Does inexistence of first moment obstructions
imply the appearance of structure?
New philosophy:
Inexistence of first moment obstructions implies appearance of structure.
Conjecture (Kahn-Kalai conjecture '06)
If H is not p-small, then P(Xcpiog x| € (H)) > 1/2. J

Theorem (Park-P. '24, Kahn-Kalai conjecture) J

If H be not p-small with { = maxpey |H|, then P(Xcpioge € (H)) > 1/2.

Determining the threshold where target structures emerge is essentially the same
as detecting existence of First moment obstructions.

Many other interesting manifestation of the central philosophy in probability,
high-dimensional geometry, etc.
Additive combinatorics: Probabilistic perspective NZMRI - January 2026 23 /42



N
First moment obstructions in Additive combinatorics

New perspective:

First moment obstructions = Existence of large, low-complexity substructures.
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First moment obstructions in Additive combinatorics

New perspective:

First moment obstructions = Existence of large, low-complexity substructures.

First moment obstruction in random Cayley graphs:
e X =0G.

o Target structures: H is the collection of sumsets A+ A where |A| = t.
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First moment obstructions in Additive combinatorics

New perspective:

First moment obstructions = Existence of large, low-complexity substructures.

First moment obstruction in random Cayley graphs:
e X =0G.

o Target structures: H is the collection of sumsets A+ A where |A| = t.

Question
Does H = {A+ A : |A] = t} admit a small cover?
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First moment obstructions in Additive combinatorics

New perspective:

First moment obstructions = Existence of large, low-complexity substructures.

First moment obstruction in random Cayley graphs:
e X =0G.

o Target structures: H is the collection of sumsets A+ A where |A| = t.

Question
Does H = {A+ A : |A] = t} admit a small cover?

Is there a small collection of /arge sets F which covers all sumsets A + A?
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First moment obstructions in Additive combinatorics

New perspective:

First moment obstructions = Existence of large, low-complexity substructures.

First moment obstruction in random Cayley graphs:
e X =0G.

o Target structures: H is the collection of sumsets A+ A where |A| = t.

Question
Does H = {A+ A : |A] = t} admit a small cover?

Is there a small collection of /arge sets F which covers all sumsets A + A?

Perspective: New ways to quantify the structure of sets with small doubling.
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First moment obstructions & Low-complexity substructures

Define the complexity of a collection of sets F as log |.F]|.

Question
Do sumsets A + A contain large low-complexity subsets? J
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First moment obstructions & Low-complexity substructures

Define the complexity of a collection of sets F as log |.F]|.

Question

Do sumsets A + A contain large low-complexity subsets? J

Theorem (Alon '07)
The independence number of G(p) is with high probability O(p~2). J
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First moment obstructions & Low-complexity substructures

Define the complexity of a collection of sets F as log |.F]|.

Question J

Do sumsets A + A contain large low-complexity subsets?

Theorem (Alon '07)
The independence number of G(p) is with high probability é(p’2). J

Key observation: There exists a collection F of sets of size t with complexity /2
that covers H.

@ The collection of sumsets A’ + A’ of a random subset A’ of size t1/2 of A
satisfies this property.
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First moment obstructions & Low-complexity substructures

Define the complexity of a collection of sets F as log |.F]|.

Question J

Do sumsets A + A contain large low-complexity subsets?

Theorem (Alon '07)
The independence number of G(p) is with high probability é(p’2). }

Key observation: There exists a collection F of sets of size t with complexity /2
that covers H.

@ The collection of sumsets A’ + A’ of a random subset A’ of size t1/2 of A
satisfies this property.

Fundamental barrier at ¢!/2:

e For A with small doubling K = |A"AL|A‘, |A+ A] < |AIY*9, any improvement

must leverage suitably additional structure.
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First moment obstructions & Low-complexity substructures

Question

Among |A| = t with small sumset A+ A, does A+ A contain large low-complexity
subsets?
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First moment obstructions & Low-complexity substructures

Question

Among |A| = t with small sumset A+ A, does A+ A contain large low-complexity
subsets?

While sets with small sumsets are structured (Freiman), the quantitative bounds
are too weak for us.
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First moment obstructions & Low-complexity substructures

Question

Among |A| = t with small sumset A+ A, does A+ A contain large low-complexity
subsets?

While sets with small sumsets are structured (Freiman), the quantitative bounds
are too weak for us.

Beside weak quantitative bounds, even when A is dense in G, existence of
low-complexity cover is open.

Question (Lovett)

For G = 4, does there exist a collection of dense subsets of G with complexity
d°®) which covers the collection of sumsets A + A where |A| = Q(29)?

[ IEL N o BV I (VTN ER L SN SN P DIEME  Additive combinatorics: Probabilistic perspective NZMRI - January 2026 26 /42



The main covering lemma

Efficient covering lemma (informal version)
There exists a collection of sets C such that:
o |C] < exp(O(min(K?, VKt)).
@ Every C € C has |C| > Q(Kt).

o For every A with |A| =t and |A + A|] < K|A|, there exists C € C such that
CCA+A
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The main covering lemma

Efficient covering lemma (informal version)
There exists a collection of sets C such that:
o |C] < exp(O(min(K?, VKt)).
@ Every C € C has |C| > Q(Kt).

o For every A with |A| =t and |A + A|] < K|A|, there exists C € C such that
CCA+A

Sumsets of sets with small doubling contain large low-complexity subsets.
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The main covering lemma

Efficient covering lemma (informal version)
There exists a collection of sets C such that:
o |C] < exp(O(min(K?, VKt)).
@ Every C € C has |C| > Q(Kt).

o For every A with |A| =t and |A + A|] < K|A|, there exists C € C such that
CCA+A

Sumsets of sets with small doubling contain large low-complexity subsets.

The case K = O(1) resolves positively the question of Lovett.
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The main covering lemma

Efficient covering lemma (informal version)
There exists a collection of sets C such that:
o |C] < exp(O(min(K?, VKt)).
@ Every C € C has |C| > Q(Kt).

o For every A with |A| =t and |A + A|] < K|A|, there exists C € C such that
CCA+A

Sumsets of sets with small doubling contain large low-complexity subsets.

The case K = O(1) resolves positively the question of Lovett.

The collection A+ A for |A| = t ~ p=3/%is (1 — p)-small.

Theorem (Alon-P. '25+)

The independence number of G(p) is with high probability O(p~—3/?). J
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The main covering lemma

Efficient covering lemma (informal version)
There exists a collection of sets C such that:
o |C| < exp(O(min(K?,VKt)).
e Every C € C has |C| > Q(Kt).

o For every A with |A| =t and |A + A|] < K|A|, there exists C € C such that
CCA+A

[z YA NELN S ET N (IR TGIENNE ORI ENEIENE  Additive combinatorics: Probabilistic perspective NZMRI - January 2026 28 /42



The main covering lemma

Efficient covering lemma (informal version)
There exists a collection of sets C such that:
o |C| < exp(O(min(K?,VKt)).
e Every C € C has |C| > Q(Kt).

o For every A with |A| =t and |A + A|] < K|A|, there exists C € C such that
CCA+A

Probabilistic approximation:

@ Both bounds rely on approximation of large level sets of the convolution
Ax Alx) = Ey[A(y)A(x — y)]-
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The main covering lemma

Efficient covering lemma (informal version)
There exists a collection of sets C such that:
o |C| < exp(O(min(K?,VKt)).
e Every C € C has |C| > Q(Kt).

o For every A with |A| =t and |A + A|] < K|A|, there exists C € C such that
CCA+A

Probabilistic approximation:

@ Both bounds rely on approximation of large level sets of the convolution
Ax Alx) = Ey[A(y)A(x — y)]-

@ In the range K large, use a random sampling argument in physical space.
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The main covering lemma

Efficient covering lemma (informal version)
There exists a collection of sets C such that:
o |C] < exp(O(min(K?, VKt)).
e Every C € C has |C| > Q(Kt).

@ For every A with |A| =t and |A + A| < K|A|, there exists C € C such that
CCA+A

Probabilistic approximation:

@ The hard range (K small) performs approximation in the Fourier space:

AxAx) = AX)*x(x).

o Sample ~ K2 random characters x according to |A(x)|2, and construct a
suitable Fourier-sparse pointwise approximation of A x A.
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Low-complexity structures in sets with small doubling

First moment obstructions <— Existence of low-complexity substructures.
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First moment obstructions <— Existence of low-complexity substructures.

New perspectives on the structures of sets with small doubling:

@ Construction of low-complexity subsets of sumsets.
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Low-complexity structures in sets with small doubling

First moment obstructions <— Existence of low-complexity substructures.

New perspectives on the structures of sets with small doubling:
@ Construction of low-complexity subsets of sumsets.

@ Explicit low-complexity representation - Resolve questions of independent
interest.
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Low-complexity structures in sets with small doubling

First moment obstructions <— Existence of low-complexity substructures.

New perspectives on the structures of sets with small doubling:
@ Construction of low-complexity subsets of sumsets.

@ Explicit low-complexity representation - Resolve questions of independent
interest.

While achieving the desired O(1) complexity for doubling K = O(1), our
dependence on K is suboptimal.
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Low-complexity structures in sets with small doubling

First moment obstructions <— Existence of low-complexity substructures.

New perspectives on the structures of sets with small doubling:
@ Construction of low-complexity subsets of sumsets.

@ Explicit low-complexity representation - Resolve questions of independent
interest.

While achieving the desired O(1) complexity for doubling K = O(1), our
dependence on K is suboptimal.

Can we achieve a low-complexity approximation with optimal dependence on K?

Question J

[z YA NELN L E (IR TGIENNE ORI EINEIENE  Additive combinatorics: Probabilistic perspective NZMRI - January 2026 30/42



Optimally counting sets with small doubling

Optimal complexity for approximating sumsets
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Enumeration of sets with small doubling

Question

What do typical sets with small doubling look like?
What is the number of sets A of size t with doubling K7
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Enumeration of sets with small doubling

Question

What do typical sets with small doubling look like?
What is the number of sets A of size t with doubling K7

Structural results are often (necessarily) weak quantitatively.
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Enumeration of sets with small doubling

Question

What do typical sets with small doubling look like?
What is the number of sets A of size t with doubling K7

Structural results are often (necessarily) weak quantitatively.

Conjecture (Alon-Balogh-Morris-Samotij '14)
The number of A C Zy with |A| = t and |A+ A = Kt is exp(o(t)) (“*/?). J
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Enumeration of sets with small doubling

Question

What do typical sets with small doubling look like?
What is the number of sets A of size t with doubling K7

Structural results are often (necessarily) weak quantitatively.

Conjecture (Alon-Balogh-Morris-Samotij '14)
The number of A C Zy with |A| = t and |A+ A = Kt is exp(o(t)) (“*/?). J

Motivated from Erdés-Cameron conjecture ('88) on enumeration of sum-free sets.
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Enumeration of sets with small doubling

Question

What do typical sets with small doubling look like?
What is the number of sets A of size t with doubling K7

Structural results are often (necessarily) weak quantitatively.

Conjecture (Alon-Balogh-Morris-Samotij '14)
The number of A C Zy with |A| = t and |A+ A = Kt is exp(o(t)) (“*/?). J

Motivated from Erdés-Cameron conjecture ('88) on enumeration of sum-free sets.

Except for very small K (K < 3), structural method is too weak for meaningful
enumeration.

[ IEL N o BV I (ST TTNEN LS AN SN P DIEME  Additive combinatorics: Probabilistic perspective NZMRI - January 2026 32/42



|
Optimally counting sets with small doubling

Conjecture (Alon-Balogh-Morris-Samotij '14)
The number of A C Zy with |A| = t and |A+ A = Kt is exp(o(t)) (“*/?). J
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Optimally counting sets with small doubling

Conjecture (Alon-Balogh-Morris-Samotij '14)
The number of A C Zy with |A| = t and |A+ A = Kt is exp(o(t)) (“*/?). J

Examples:

@ Subsets of an arithmetic progression of length Kt/2.
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Optimally counting sets with small doubling

Conjecture (Alon-Balogh-Morris-Samotij '14)
The number of A C Zy with |A| = t and |A+ A = Kt is exp(o(t)) (“*/?). J

Examples:
@ Subsets of an arithmetic progression of length Kt/2.

@ The sum of an arithmetic progression of length t/K and K generic elements.
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Optimally counting sets with small doubling

Conjecture (Alon-Balogh-Morris-Samotij '14)
The number of A C Zy with |A| = t and |A+ A = Kt is exp(o(t)) (“*/?). J

Examples:
@ Subsets of an arithmetic progression of length Kt/2.
@ The sum of an arithmetic progression of length t/K and K generic elements.

@ In a general abelian group G: Subsets of a |(Kt + b)/(2b)]|-progression of
subgroups of size b < Kt.

[z YA NELN L ET N (IR TGIENNE QNI ENEIENE  Additive combinatorics: Probabilistic perspective NZMRI - January 2026 33/42



Optimally counting sets with small doubling

Conjecture (Alon-Balogh-Morris-Samotij '14)
The number of A C Zy with |A| = t and |A+ A = Kt is exp(o(t)) (“*/?). J

Examples:
@ Subsets of an arithmetic progression of length Kt/2.
@ The sum of an arithmetic progression of length t/K and K generic elements.

@ In a general abelian group G: Subsets of a |(Kt + b)/(2b)]|-progression of
subgroups of size b < Kt.

o In Fg: subgroups of size t ~ dlogd.
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@ The sum of an arithmetic progression of length t/K and K generic elements.

@ In a general abelian group G: Subsets of a |(Kt + b)/(2b)]|-progression of
subgroups of size b < Kt.

o In Fg: subgroups of size t ~ dlogd.
The examples show that the conjecture can only hold for K < t/(log N log log N).
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Optimally counting sets with small doubling

Conjecture (Alon-Balogh-Morris-Samotij '14)
The number of A C Zy with |A| = t and |A+ A = Kt is exp(o(t)) (“*/?). J

Examples:
@ Subsets of an arithmetic progression of length Kt/2.
@ The sum of an arithmetic progression of length t/K and K generic elements.

@ In a general abelian group G: Subsets of a |(Kt + b)/(2b)]|-progression of
subgroups of size b < Kt.

o In Fg: subgroups of size t ~ dlogd.
The examples show that the conjecture can only hold for K < t/(log N log log N).

Conjecture (Alon-Balogh-Morris-Samotij '14)

Consider an abelian group G of order N. Let K < t/(log N loglog N). The
number of A C G with |A] =t and |[A+ A| = Kt is exp(o(t))((KtthS)ﬁ)' where s
is the maximum size of a subgroup of size at most Kt.
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Optimally counting sets with small doubling in abelian
groups

Conjecture (Alon-Balogh-Morris-Samotij '14)

The number of A C Zy with |[A| =t and |[A+ Al = Kt is exp(o(t))(Ktt/z) for
K < t/(log N log log N).
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Conjecture (Alon-Balogh-Morris-Samotij '14)

The number of A C Zy with |[A| =t and |[A+ Al = Kt is exp(o(t))(Ktt/z) for
K < t/(log N log log N).

Progress:
@ Green-Morris '16: K = O(1).
e Campos '20, Campos-Collares-Morris-Morrison-Souza '22: K < t/(log N)3.
o Liu-Mattos-Szabé '25: K < t/(log N)2.
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Optimally counting sets with small doubling in abelian
groups

Conjecture (Alon-Balogh-Morris-Samotij '14)

The number of A C Zy with |A| = t and |A+ A| = Kt is exp(o(t)) (¥%/?) for
K < t/(log N log log N).

Progress:
@ Green-Morris '16: K = O(1).
e Campos '20, Campos-Collares-Morris-Morrison-Souza '22: K < t/(log N)3.
o Liu-Mattos-Szabé '25: K < t/(log N)2.
Technique:
@ Hypergraph container lemma.

@ Regularity-type method.
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Optimally counting sets with small doubling in abelian
groups
Theorem (P. '25+)

The number of A C Zy with |Al =t and |[A+ Al = Kt is exp(o(t))(Ktt/z) for
K < t/(log N loglog N).
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The number of A C Zy with |Al =t and |[A+ Al = Kt is exp(o(t))(Ktt/z) for
K < t/(log N loglog N).

New perspective:

First moment obstruction — Low-complexity structures in A+ A.
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Optimally counting sets with small doubling in abelian
groups
Theorem (P. '25+)

The number of A C Zy with |A| =t and |[A+ Al = Kt is exp(o(t))(Ktt/z) for
K < t/(log N log log N).

New perspective:

First moment obstruction — Low-complexity structures in A+ A.

Low-complexity approximation of A+ A — Enumeration of A+ A.

Theorem (Approximation lemma (Informal), P. '25+)

For every t and K, there exists F with |F| < exp(K(log N)(loglog N)) such that:
For every |A| = t with |A+ A| = Kt, there exists F € F such that
|[FA(A+ A)| < o(Kt).
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Optimally counting sets with small doubling in abelian
groups
Theorem (P. '25+)

The number of A C Zy with |A| =t and |[A+ Al = Kt is exp(o(t))(Ktt/z) for
K < t/(log N log log N).

New perspective:

First moment obstruction — Low-complexity structures in A+ A.

Low-complexity approximation of A+ A — Enumeration of A+ A.

Theorem (Approximation lemma (Informal), P. '25+)

For every t and K, there exists F with |F| < exp(K(log N)(loglog N)) such that:
For every |A| = t with |A+ A| = Kt, there exists F € F such that
|[FA(A+ A)| < o(Kt).

More accurately, the approximation applies to the subset B of A+ A consisting of
elements x with at least et/K representations as a1 + a».
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Approximation lemma

Theorem (Approximation lemma (Informal), P. '25+)

For every t and K, there exists F with |F| < exp(K (log N)(loglog N)) such that:
For every |A| = t with |A+ A| = Kt, there exists F € F such that
|[FA(A+ A)| < o(Kt).
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Approximation lemma

Theorem (Approximation lemma (Informal), P. '25+)

For every t and K, there exists F with |F| < exp(K (log N)(loglog N)) such that:
For every |A| = t with |A+ A| = Kt, there exists F € F such that
[FA(A+ A)| < o(Kt).

Every sumset A + A of a set A with doubling K can be approximated by a set of
complexity O(K).
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Theorem (Approximation lemma (Informal), P. '25+)

For every t and K, there exists F with |F| < exp(K (log N)(loglog N)) such that:
For every |A| = t with |A+ A| = Kt, there exists F € F such that
|[FA(A+ A)| < o(Kt).

Every sumset A+ A of a set A with doubling K can be approximated by a set of
complexity O(K).

This complexity is optimal.

o Consider K generic translates of an arithmetic progression of length t/K.
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Approximation lemma

Theorem (Approximation lemma (Informal), P. '25+)

For every t and K, there exists F with |F| < exp(K (log N)(loglog N)) such that:
For every |A| = t with |A+ A| = Kt, there exists F € F such that
|[FA(A+ A)| < o(Kt).

Every sumset A + A of a set A with doubling K can be approximated by a set of
complexity O(K).

This complexity is optimal.

o Consider K generic translates of an arithmetic progression of length t/K.

By relaxing the one-sided covering condition, we can attain optimal complexity for
approximating A + A.

This is sufficient for enumeration of sets with small doubling.
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For every t and K, there exists F with |F| < exp(K(log N)(loglog N)) such that:

For every |A| = t with |A+ A| = Kt, there exists F € F such that
|FA(A+ A)| < o(Kt).

Recover enumeration of A from Approximation lemma:
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Theorem (Approximation lemma (Informal), P. '25-+)

For every t and K, there exists F with |F| < exp(K(log N)(loglog N)) such that:

For every |A| = t with |A+ A| = Kt, there exists F € F such that
|FA(A+ A)| < o(Kt).

Recover enumeration of A from Approximation lemma:
o Find F of low-complexity which approximates A + A.
@ Based on F, construct a superset X D A.
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Approximation lemma

Theorem (Approximation lemma (Informal), P. '25-+)

For every t and K, there exists F with |F| < exp(K(log N)(loglog N)) such that:

For every |A| = t with |A+ A| = Kt, there exists F € F such that
|FA(A+ A)| < o(Kt).

Recover enumeration of A from Approximation lemma:
o Find F of low-complexity which approximates A + A.
@ Based on F, construct a superset X D A.

@ Via a graph container algorithm, show that we can efficiently refine until
[X| < (14 o(1))Kt/2.
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Approximation lemma

Theorem (Approximation lemma (Informal), P. '25+)

For every t and K, there exists F with |F| < exp(K (log N)(loglog N)) such that:
For every |A| =t with |A+ A| = Kt, there exists F € F such that
|[FA(A+ A)| < o(Kt).

The approximation lemma relies on a probabilistic approximation simultaneously in
the Fourier and physical space:
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|[FA(A+ A)| < o(Kt).

The approximation lemma relies on a probabilistic approximation simultaneously in
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approximation f of A.
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Approximation lemma

Theorem (Approximation lemma (Informal), P. '25+)

For every t and K, there exists F with |F| < exp(K (log N)(loglog N)) such that:
For every |A| =t with |A+ A| = Kt, there exists F € F such that
|[FA(A+ A)| < o(Kt).

The approximation lemma relies on a probabilistic approximation simultaneously in
the Fourier and physical space:

@ Based on a small random sample of a subset of A, construct an
approximation f of A.

e Smoothen f, and apply Fourier inversion on £2,
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Refined counting

Question (Green-Morris '16)
What is the number of A C Zy with |A] = t = O(log N) and |A + A] < Kt? J
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Refined counting

Question (Green-Morris '16)
What is the number of A C Zy with |A] = t = O(log N) and |A + A] < Kt? J

Theorem (P. '25+)

The number of A C Zy with |A| =t and |A+ A] < Kt for K < t/(log tloglog t)

is max, exp(o( 1)) N+ (4 T1I/2),

[z YA NELN L ET N (IR TGIENNE ORI NEIENE  Additive combinatorics: Probabilistic perspective NZMRI - January 2026 39/42



Refined counting

Question (Green-Morris '16)
What is the number of A C Zy with |A] = t = O(log N) and |A + A] < Kt? J

Theorem (P. '25+)

The number of A C Zy with |A| =t and |A+ A] < Kt for K < t/(log tloglog t)

is max, exp(o( 1)) N+ (4 T1I/2),

Rely on approximation framework together with a crucial additional ingredient:
Robust version of Freiman-Ruzsa's lemma over Zy.

@ Established in Alon-P. '25, for sharp asymptotics of the independence number
of logarithmically sparse random Cayley graph.

@ Proof relies on the main combinatorial lemma.
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N
Conclusion

Existence of first moment obstructions forbids appearance of structures.

Inexistence of first moment obstructions implies appearance of structures.
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N
Conclusion

Existence of first moment obstructions forbids appearance of structures.

Inexistence of first moment obstructions implies appearance of structures.

First moment obstructions suggest existence of low-complexity substructures.

Randomized approximations provide a pathway to Low-complexity approximations
(and hence First moment obstructions).
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|
Outlook: Low-complexity approximations

Our low-complexity covers and approximations provide explicit classes of
structured functions that approximate large level sets of the Fourier transform.
@ What properties can be further extracted from the low-complexity family of
functions?
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structured functions that approximate large level sets of the Fourier transform.

@ What properties can be further extracted from the low-complexity family of
functions?

Conjecture (Alon-P.)

There exists a collection of sets of size Q(Kt) of complexity O(K) which cover
A+ A where |A| =t and |A+ A| < Kt.
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Outlook: Low-complexity approximations

Our low-complexity covers and approximations provide explicit classes of
structured functions that approximate large level sets of the Fourier transform.

@ What properties can be further extracted from the low-complexity family of
functions?

Conjecture (Alon-P.)

There exists a collection of sets of size Q(Kt) of complexity O(K) which cover
A+ A where |A| =t and |A+ A| < Kt.

Directions

o Further applications of low-complexity approximations beyond the additive
combinatorial context.
o Alon’s conjecture in groups with exponent 2 and 3.

o First moment obstructions beyond random graphs: Study interesting
properties of A-independent graphs (random entangled graphs, random
Cayley graphs).

o
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Thank you!
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