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Recap

Definition (Cayley graph)

For a group G and symmetric subset S ⊂ G , the Cayley graph GS has vertex set
G and distinct x , y are adjacent if xy−1 ∈ S .

Given p ∈ (0, 1), the random Cayley graphs G (p) is the Cayley graph GS where
each {g , g−1} is included independently in S with probability p.

Theorem (Conlon-Fox-P.-Yepremyan ’24)

With high probability, the independence and clique number of a uniform random
Cayley graph on any group G of order N is O(logN log logN).

First moment of large independent sets in random Cayley graphs ↔ Counting
sets with small doubling |AA−1|/|A|.

Theorem (Conlon-Fox-P.-Yepremyan ’24)

In any group G of order N, the number of subsets A ⊂ G with |A| = n and
|AA−1| ≤ Kn is at most NC(K+log n)(CK )n.
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Recap

Theorem (Conlon-Fox-P.-Yepremyan ’24)

In any group G of order N, the number of subsets A ⊂ G with |A| = n and
|AA−1| ≤ Kn is at most NC(K+log n)(CK )n.

Proof via the main combinatorial lemma.

Theorem (Fox-P. ’25+)

If G is an abelian group with exponent r and A ⊆ G is so that |A + A| ≤ K |A|,
then A is contained in subgroup H of size |H| ≤ r (2+o(1))K |A|.

In particular, Ruzsa’s conjecture holds.

Further applications:

Dimension of sets with small doubling

Robust Freiman-Ruzsa lemma

Random sumset extractors
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Perspective

Combinatorial perspective: Main combinatorial lemma identifies novel
combinatorial structures underlying sets with small doubling.

New combinatorial approach to additive combinatorics:

Main combinatorial lemma: expanding structures in sets with small doubling.

Refinement: Use expanding structures to probe information about the entire
set.

A′

Bi
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Perspective

A′

Bi

Perspective: Instead of zooming in on explicit structures inside the set, the
combinatorial lemma provides first a template that is “as random-like as possible”.

The proof follows from an intricate random exploration process.

Robust and applicable in wide generality.
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Alon’s conjecture - Going beyond uniform random
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Alon’s conjecture

Conjecture (Alon ’89)

There is a constant C such that every finite group has a Cayley graph which is
C -Ramsey.
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Alon’s conjecture - Going beyond uniform random

Over Fd
p , a uniformly random Cayley graph is not Ramsey w.h.p.

We define an alternative distribution of random Cayley graphs to “remove” the
problematic cliques.

Theorem (Conlon-Fox-P.-Yepremyan ’24)

For p ≥ 5, there exists Cayley graphs over Fd
p with clique and independence

number (2 + o(1)) log2 N where N = pd .
For p = 1 (mod 4), these Cayley graphs are self-complementary.

Answer a question of Alon and Orlitsky (’95) motivated by zero-error capacity and

dual-source coding.

Theorem (Conlon-Fox-P.-Yepremyan ’24)

For almost all N, all abelian groups G of order N have a Cayley graph which is
C -Ramsey.

Recent generalization to all groups of order coprime to 6 by Schildkraut.
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Dependent random graphs
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New direction: Dependent random graphs

The combinatorial approach to clique number of dense random Cayley graphs
suggests intriguing universal behaviors in general random graph models with
significant dependencies.

Consider an edge-coloring c of a complete graph, where each color class has
degree at most ∆.

Definition (Random entangled graph)

An entangled graph is the edge-union of some of the color classes.

The random entangled graph Gc(p) is formed by including each color class with
probability p independently.

Examples:

Erdős-Rényi random graphs.

Random Cayley graphs.

Random Latin square graphs: Color class Ck = {{i , j} : Lij = k} for a Latin
square L.
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New direction: Random entangled graphs

Theorem 1 (Conlon-Fox-P.-Yepremyan ’24)

In a ∆-bounded edge-coloring of the complete graph on N vertices, the number of
n-vertex subsets with at most Kn colors is at most

NC∆(K+log n)(C∆K )n.

Theorem 2 (Conlon-Fox-P.-Yepremyan ’24)

If an edge-coloring c of KN is ∆-bounded, then with high probability,

α(Gc(p)) = Op,∆(logN log logN).

From Theorem 1, a careful union bound yields Theorem 2.

Theorem 2 solves a conjecture of Christofides and Markström (’11) on the
independence number of random Latin square graphs.
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New direction: ∆-independent random graphs

How much independence is needed?

The phenomena extend to a significantly broader class of random graphs.

Definition (∆-independent graph)

An ensemble of random graphs is said to be ∆-independent if for each edge e,
there is a graph Ge of maximum degree ∆ such that the appearance of e is
independent of all edges outside Ge .

Significant weakening of usual condition in the Lovász Local Lemma!

All random entangled graphs defined by a ∆-bounded edge coloring are
∆-independent random graphs.

Theorem (Conlon-Fox-P.-Yepremyan ’26+)

Consider a ∆-independent random graph G where the probability of appearance
of each edge is Θ(p). Then, with high probability,

α(G ) = Op,∆(logN log logN).
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New direction: ∆-independent random graphs

Definition (∆-independent graph)

An ensemble of random graphs is said to be ∆-independent if for each edge e,
there is a graph Ge of maximum degree ∆ such that the appearance of e is
independent of all edges outside Ge .

Theorem (Conlon-Fox-P.-Yepremyan ’26+)

Consider a symmetric ∆-independent random graph G where the probability of
appearance of each edge is p. Then, with high probability, all nontrivial
eigenvalues of G are bounded by O(

√
pN logN).

As a corollary, we obtain that G is Hamiltonian with high probability for
p � logN.

Open direction

Study interesting properties of ∆-independent graphs (random entangled graphs,
random Cayley graphs).
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Sparse random Cayley graphs & First moment obstructions
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Sparse random Cayley graphs

Definition (Cayley sum graph)

For an abelian group G and subset S ⊂ G , the Cayley sum graph GS has vertex
set G and distinct x , y are adjacent if x + y ∈ S .

Given p ∈ (0, 1), the random Cayley sum graph G (p) is the Cayley sum graph GS

where each x is included independently in S with probability p.

Conjecture (Alon ’07, ’13)

The independence number of G (p) is with high probability Õ(p−1).

The random Cayley sum graph G (p) behave like a random pN-regular graph.
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First moment obstructions and Additive combinatorics

Naive first moment for independent sets in Cayley sum graphs:

E[# independent sets of size t in G (p)] =
∑
|A|=t

(1−p)|A+A| ≈
∑
|A|=t

exp(−p|A+A|).

Large for any t = o(|G |) and p = o(1): Exponentially many |A| = t with
|A + A| = O(t).

Need better First moment obstructions.
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First moment obstructions

General setup:

Finite set X .

Collection of target sets H ⊆ 2X .

Random subset Xp: each element of X included independently with
probability p.

Denote 〈H〉 the collection of subsets W ∈ 2X containing at least one target set
H ∈ H:

Question

Does Xp contain a target set H ∈ H?

What are obstructions (certificates) which imply that P(Xp ∈ 〈H〉) is small?
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First moment obstructions

Example:

X =
(

[N]
2

)
, then Xp ∼ G (N, p).

H is the collection of isomorphic copies of a graph H on N vertices.

In Erdős’ case, H is taken to be a clique on n = 2 log2 N vertices.

Naive obstruction:∑
H∈H

p|H| < 1/2 ⇒ P(Xp ∈ 〈H〉) < 1/2.

Example: Erdős’ proof that random graphs G (N, 1/2) do not have cliques of size
2 log2 N.
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In Erdős’ case, H is taken to be a clique on n = 2 log2 N vertices.

Naive obstruction:∑
H∈H

p|H| < 1/2 ⇒ P(Xp ∈ 〈H〉) < 1/2.
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First moment obstructions

Definition

We say that G is a cover for H if every H ∈ H contains some G ∈ G.

H
G

First moment obstruction:∑
G∈G

p|G | < 1/2 ⇒ P(Xp ∈ 〈H〉) ≤ P(Xp ∈ 〈G〉) < 1/2.

Definition

We call a cover G with
∑

G∈G p
|G | < 1/2 a first moment obstruction for H. We

say that H is p-small if a first moment obstruction exists.

If H is p-small, then P(Xp ∈ 〈H〉) < 1/2.
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First moment obstructions

Example:

X =
(

[N]
2

)
, then Xp ∼ G (N, p).

H is the collection of isomorphic copies of a graph H on N vertices.

Figure 1: H = K4

Example: H = {copies of K4}.

“Naive” cover: H is a cover for itself, so H is
(cn−2/3)-small.

For p < cn−2/3, there is a first moment
obstruction showing that
P(G (N, p) contains K4) < 1/2.

H is not Cn−2/3-small, and
P(G (N,Cn−2/3) contains K4) > 1/2.
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H is the collection of isomorphic copies of a graph H on N vertices.

Figure 2: H = K4 with 2
pendant edges

Example: H = {copies of H}.

“Naive” cover: H is a cover for itself, so H is
(cn−3/4)-small.

Better covers: G consisting of copies of K4:
H is (cn−2/3)-small.

For p < cn−2/3, there is a first moment
obstruction showing that
P(G (N, p) contains H) < 1/2.
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First moment obstructions

Example:

X =
(

[N]
2

)
, then Xp ∼ G (N, p).

H is the collection of isomorphic copies of a graph H on N vertices.

1

2

3

· · ·

n − 2

n − 1

n

Figure 3:
H = Hamiltonian cycle

Example: H = {copies of H}.

“Naive” cover: H is a cover for itself, so H is
(c/n)-small.

For p < c/n, there is a first moment
obstruction showing that
P(G (N, p) contains H) < 1/2.

Other covers: all edges adjacent to a fixed
vertex.

H is not C/n-small, and
P(G (N,C (log n)/n) contains H) > 1/2.
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From Obstructions to Structures

If H is p-small, then P(Xp ∈ 〈H〉) < 1/2.

What about the other direction? Does inexistence of first moment obstructions
imply the appearance of structure?

New philosophy:

Inexistence of first moment obstructions implies appearance of structure.

Conjecture (Kahn-Kalai conjecture ’06)

If H is not p-small, then P(XCp log |X | ∈ 〈H〉) ≥ 1/2.

Theorem (Park-P. ’24, Kahn-Kalai conjecture)

If H be not p-small with ` = maxH∈H |H|, then P(XCp log ` ∈ 〈H〉) ≥ 1/2.

Determining the threshold where target structures emerge is essentially the same
as detecting existence of First moment obstructions.

Many other interesting manifestation of the central philosophy in probability,
high-dimensional geometry, etc.
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First moment obstructions in Additive combinatorics

New perspective:

First moment obstructions = Existence of large, low-complexity substructures.

First moment obstruction in random Cayley graphs:

X = G .

Target structures: H is the collection of sumsets A + A where |A| = t.

Question

Does H = {A + A : |A| = t} admit a small cover?

Is there a small collection of large sets F which covers all sumsets A + A?

Perspective: New ways to quantify the structure of sets with small doubling.
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Perspective: New ways to quantify the structure of sets with small doubling.
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First moment obstructions & Low-complexity substructures

Define the complexity of a collection of sets F as log |F|.

Question

Do sumsets A + A contain large low-complexity subsets?

Theorem (Alon ’07)

The independence number of G (p) is with high probability Õ(p−2).

Key observation: There exists a collection F of sets of size t with complexity t1/2

that covers H.

The collection of sumsets A′ + A′ of a random subset A′ of size t1/2 of A
satisfies this property.

Fundamental barrier at t1/2:

For A with small doubling K = |A+A|
|A| , |A + A| ≤ |A|1+δ, any improvement

must leverage suitably additional structure.
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First moment obstructions & Low-complexity substructures

Question

Among |A| = t with small sumset A + A, does A + A contain large low-complexity
subsets?

While sets with small sumsets are structured (Freiman), the quantitative bounds
are too weak for us.

Beside weak quantitative bounds, even when A is dense in G , existence of
low-complexity cover is open.

Question (Lovett)

For G = Fd
2 , does there exist a collection of dense subsets of G with complexity

dO(1) which covers the collection of sumsets A + A where |A| = Ω(2d)?
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The main covering lemma

Efficient covering lemma (informal version)

There exists a collection of sets C such that:

|C| ≤ exp(Õ(min(K 2,
√
Kt)).

Every C ∈ C has |C | ≥ Ω̃(Kt).

For every A with |A| = t and |A + A| ≤ K |A|, there exists C ∈ C such that
C ⊆ A + A.

Sumsets of sets with small doubling contain large low-complexity subsets.

The case K = O(1) resolves positively the question of Lovett.

The collection A + A for |A| = t ≈ p−3/2 is (1− p)-small.

Theorem (Alon-P. ’25+)

The independence number of G (p) is with high probability Õ(p−3/2).
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Efficient covering lemma (informal version)

There exists a collection of sets C such that:

|C| ≤ exp(Õ(min(K 2,
√
Kt)).

Every C ∈ C has |C | ≥ Ω̃(Kt).

For every A with |A| = t and |A + A| ≤ K |A|, there exists C ∈ C such that
C ⊆ A + A.

Probabilistic approximation:

Both bounds rely on approximation of large level sets of the convolution
A ∗ A(x) = Ey [A(y)A(x − y)].

In the range K large, use a random sampling argument in physical space.
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The main covering lemma

Efficient covering lemma (informal version)

There exists a collection of sets C such that:

|C| ≤ exp(Õ(min(K 2,
√
Kt)).

Every C ∈ C has |C | ≥ Ω̃(Kt).

For every A with |A| = t and |A + A| ≤ K |A|, there exists C ∈ C such that
C ⊆ A + A.

Probabilistic approximation:

The hard range (K small) performs approximation in the Fourier space:

A ∗ A(x) =
∑
χ

Â(χ)2χ(x).

Sample ≈ K 2 random characters χ according to |Â(χ)|2, and construct a
suitable Fourier-sparse pointwise approximation of A ∗ A.
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Low-complexity structures in sets with small doubling

First moment obstructions ←→ Existence of low-complexity substructures.

New perspectives on the structures of sets with small doubling:

Construction of low-complexity subsets of sumsets.

Explicit low-complexity representation - Resolve questions of independent
interest.

While achieving the desired O(1) complexity for doubling K = O(1), our
dependence on K is suboptimal.

Question

Can we achieve a low-complexity approximation with optimal dependence on K?
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Optimally counting sets with small doubling

Optimal complexity for approximating sumsets
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Enumeration of sets with small doubling

Question

What do typical sets with small doubling look like?
What is the number of sets A of size t with doubling K?

Structural results are often (necessarily) weak quantitatively.

Conjecture (Alon-Balogh-Morris-Samotij ’14)

The number of A ⊆ ZN with |A| = t and |A + A| = Kt is exp(o(t))
(
Kt/2
t

)
.

Motivated from Erdős-Cameron conjecture (’88) on enumeration of sum-free sets.

Except for very small K (K < 3), structural method is too weak for meaningful
enumeration.
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Optimally counting sets with small doubling

Conjecture (Alon-Balogh-Morris-Samotij ’14)

The number of A ⊆ ZN with |A| = t and |A + A| = Kt is exp(o(t))
(
Kt/2
t

)
.

Examples:

Subsets of an arithmetic progression of length Kt/2.

The sum of an arithmetic progression of length t/K and K generic elements.

In a general abelian group G : Subsets of a b(Kt + b)/(2b)c-progression of
subgroups of size b ≤ Kt.

In Fd
p : subgroups of size t ∼ d log d .

The examples show that the conjecture can only hold for K � t/(logN log logN).

Conjecture (Alon-Balogh-Morris-Samotij ’14)

Consider an abelian group G of order N. Let K ≤ t/(logN log logN). The

number of A ⊆ G with |A| = t and |A + A| = Kt is exp(o(t))
(

(Kt+s)/2
t

)
, where s

is the maximum size of a subgroup of size at most Kt.
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Optimally counting sets with small doubling in abelian
groups

Conjecture (Alon-Balogh-Morris-Samotij ’14)

The number of A ⊆ ZN with |A| = t and |A + A| = Kt is exp(o(t))
(
Kt/2
t

)
for

K � t/(logN log logN).

Progress:

Green-Morris ’16: K = O(1).

Campos ’20, Campos-Collares-Morris-Morrison-Souza ’22: K � t/(logN)3.

Liu-Mattos-Szabó ’25: K � t/(logN)2.

Technique:

Hypergraph container lemma.

Regularity-type method.
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Optimally counting sets with small doubling in abelian
groups

Theorem (P. ’25+)

The number of A ⊆ ZN with |A| = t and |A + A| = Kt is exp(o(t))
(
Kt/2
t

)
for

K � t/(logN log logN).

New perspective:

First moment obstruction → Low-complexity structures in A + A.

Low-complexity approximation of A + A → Enumeration of A + A.

Theorem (Approximation lemma (Informal), P. ’25+)

For every t and K, there exists F with |F| ≤ exp(K (logN)(log logN)) such that:
For every |A| = t with |A + A| = Kt, there exists F ∈ F such that
|F∆(A + A)| ≤ o(Kt).

More accurately, the approximation applies to the subset B of A+ A consisting of

elements x with at least εt/K representations as a1 + a2.
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Approximation lemma

Theorem (Approximation lemma (Informal), P. ’25+)

For every t and K, there exists F with |F| ≤ exp(K (logN)(log logN)) such that:
For every |A| = t with |A + A| = Kt, there exists F ∈ F such that
|F∆(A + A)| ≤ o(Kt).

Every sumset A + A of a set A with doubling K can be approximated by a set of
complexity Õ(K ).

This complexity is optimal.

Consider K generic translates of an arithmetic progression of length t/K .

By relaxing the one-sided covering condition, we can attain optimal complexity for
approximating A + A.

This is sufficient for enumeration of sets with small doubling.
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This complexity is optimal.

Consider K generic translates of an arithmetic progression of length t/K .

By relaxing the one-sided covering condition, we can attain optimal complexity for
approximating A + A.

This is sufficient for enumeration of sets with small doubling.

Huy Tuan Pham (California Institute of Technology) Additive combinatorics: Probabilistic perspective NZMRI - January 2026 36 / 42



Approximation lemma
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For every t and K, there exists F with |F| ≤ exp(K (logN)(log logN)) such that:
For every |A| = t with |A + A| = Kt, there exists F ∈ F such that
|F∆(A + A)| ≤ o(Kt).

Recover enumeration of A from Approximation lemma:

Find F of low-complexity which approximates A + A.

Based on F , construct a superset X ⊃ A.

Via a graph container algorithm, show that we can efficiently refine until
|X | ≤ (1 + o(1))Kt/2.
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Approximation lemma

Theorem (Approximation lemma (Informal), P. ’25+)

For every t and K, there exists F with |F| ≤ exp(K (logN)(log logN)) such that:
For every |A| = t with |A + A| = Kt, there exists F ∈ F such that
|F∆(A + A)| ≤ o(Kt).

The approximation lemma relies on a probabilistic approximation simultaneously in
the Fourier and physical space:

Based on a small random sample of a subset of A, construct an
approximation f̂ of Â.

Smoothen f̂ , and apply Fourier inversion on f̂ 2.
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Refined counting

Question (Green-Morris ’16)

What is the number of A ⊆ ZN with |A| = t = Θ(logN) and |A + A| ≤ Kt?

Theorem (P. ’25+)

The number of A ⊆ ZN with |A| = t and |A + A| ≤ Kt for K � t/(log t log log t)

is maxr exp(o(t))N r+1
(

(Kt−(r−1)t)/2
t−r+1

)
.

Rely on approximation framework together with a crucial additional ingredient:
Robust version of Freiman-Ruzsa’s lemma over ZN .

Established in Alon-P. ’25, for sharp asymptotics of the independence number
of logarithmically sparse random Cayley graph.

Proof relies on the main combinatorial lemma.
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Conclusion

Existence of first moment obstructions forbids appearance of structures.

Inexistence of first moment obstructions implies appearance of structures.

First moment obstructions suggest existence of low-complexity substructures.

Randomized approximations provide a pathway to Low-complexity approximations
(and hence First moment obstructions).
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Outlook: Low-complexity approximations

Our low-complexity covers and approximations provide explicit classes of
structured functions that approximate large level sets of the Fourier transform.

What properties can be further extracted from the low-complexity family of
functions?

Conjecture (Alon-P.)

There exists a collection of sets of size Ω̃(Kt) of complexity Õ(K ) which cover
A + A where |A| = t and |A + A| ≤ Kt.

Directions

Further applications of low-complexity approximations beyond the additive
combinatorial context.

Alon’s conjecture in groups with exponent 2 and 3.

First moment obstructions beyond random graphs: Study interesting
properties of ∆-independent graphs (random entangled graphs, random
Cayley graphs).
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Thank you!
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