

Symmetries in noncommuting variables: in and **out**

Part Two

Jurij Volčič

University of Auckland

NZMRI 2026

The plan

- ▶ Emmy Noether's Problem
- ▶ Noncommutative polynomials and rational functions
- ▶ Free Noether & Lüroth Problems
- ▶ ToDo

Throughout: \mathbb{k} is a ground field

A familiar example

let S_2 act on \mathbb{k}^2 by swapping the coordinates $x \leftrightarrow y$

invariant functions f on \mathbb{k}^2 , such that $f(x, y) = f(y, x)$?

symmetric polynomials: $\mathbb{k}[x + y, xy]$

e.g. $x^2 + y^2 = (x + y)^2 - 2 \cdot xy$

symmetric rational functions: $\mathbb{k}(x + y, xy)$

Classical invariant theory

Let G be a group acting linearly on the vector space \mathbb{k}^n

G induces a linear action on $\mathbb{k}[x_1, \dots, x_n]$ and $\mathbb{k}(x_1, \dots, x_n)$

G -invariant polynomials: $\mathbb{k}[x_1, \dots, x_n]^G$

G -invariant rational functions: $\mathbb{k}(x_1, \dots, x_n)^G$

Classical invariant theory

Let G be a group acting linearly on the vector space \mathbb{k}^n

G induces a linear action on $\mathbb{k}[x_1, \dots, x_n]$ and $\mathbb{k}(x_1, \dots, x_n)$

G -invariant polynomials: $\mathbb{k}[x_1, \dots, x_n]^G$

G -invariant rational functions: $\mathbb{k}(x_1, \dots, x_n)^G$

Basic queries:

- ▶ What is a small set of generators of $\mathbb{k}[x_1, \dots, x_n]^G$ as a \mathbb{k} -algebra?

What is a small set of generators of $\mathbb{k}(x_1, \dots, x_n)^G$ as a \mathbb{k} -field?

1st fundamental theorem

- ▶ What are the relations between these generators?

2nd fundamental theorem

Classical invariant theory

Let G be a group of \mathbb{k} -linear automorphisms of $\mathbb{k}(x_1, \dots, x_n)$

G -invariant rational functions: $\mathbb{k}(x_1, \dots, x_n)^G$

Basic queries:

- ▶ What is a small set of generators of $\mathbb{k}(x_1, \dots, x_n)^G$ as a \mathbb{k} -field?

1st fundamental theorem

- ▶ What are the relations between these generators?

2nd fundamental theorem

e.g. $S_2 = \{\text{id}, \tau\}$ act on $\mathbb{k}(x, y)$ as $\tau(x) = x$, $\tau(y) = \frac{x^3+x}{y}$

Problems of Noether and Lüroth

rational = isomorphic to $\mathbb{k}(y_1, \dots, y_m)$ for some m

Noether's problem¹⁹¹³ (original): let a finite group G act on \mathbb{k}^n by permuting the coordinates.

Is $\mathbb{k}(x_1, \dots, x_n)^G$ rational?

Problems of Noether and Lüroth

rational = isomorphic to $\mathbb{k}(y_1, \dots, y_m)$ for some m

Noether's problem¹⁹¹³: let a finite group G act linearly on \mathbb{k}^n .

Is $\mathbb{k}(x_1, \dots, x_n)^G$ rational?

Problems of Noether and Lüroth

rational = isomorphic to $\mathbb{k}(y_1, \dots, y_m)$ for some m

Noether's problem¹⁹¹³: let a finite group G act linearly on \mathbb{k}^n

Is $\mathbb{k}(x_1, \dots, x_n)^G$ rational?

Lüroth's theorem¹⁸⁷⁶: every \mathbb{k} -subfield of $\mathbb{k}(x)$ is rational.

Lüroth's problem: is every \mathbb{k} -subfield K of $\mathbb{k}(x_1, \dots, x_n)$ rational?

Problems of Noether and Lüroth

rational = isomorphic to $\mathbb{k}(y_1, \dots, y_m)$ for some m

Noether's problem¹⁹¹³: let a finite group G act linearly on \mathbb{k}^n

Is $\mathbb{k}(x_1, \dots, x_n)^G$ rational?

NO Swan⁶⁹; Clemens-Griffiths⁷², Artin-Mumford⁷²

YES if G generated by reflections Chevalley–Shephard–Todd⁵⁴

$$\text{char } \mathbb{k} \nmid |G|$$

Lüroth's theorem¹⁸⁷⁶: every \mathbb{k} -subfield of $\mathbb{k}(x)$ is rational.

Lüroth's problem: is every \mathbb{k} -subfield K of $\mathbb{k}(x_1, \dots, x_n)$ rational?

YES if $n = 2$ and $\mathbb{k} = \mathbb{C}$, or $\text{trdeg}_{\mathbb{k}} K = 1$

NO in general

Free algebra

NC analog of polynomials $\mathbb{k}[x_1, \dots, x_n]$:

free algebra of noncommutative polynomials of rank n

$\mathbb{k}\langle x_1, \dots, x_n \rangle$

e.g.

$$x_1 x_2 x_1^2 - x_2 x_1 + x_1 x_2 - 3$$

Free skew field

60s/70s: Schützenberger, Amitsur, Cohn

NC analog of rational functions $\mathbb{k}(x_1, \dots, x_n)$:

free skew field of noncommutative rational functions of rank n

$\mathbb{k}\langle x_1, \dots, x_n \rangle$

e.g.

$$(x_1 - x_2 x_1^{-1} x_2)^{-1}$$

$$= -x_2^{-1} x_1 (x_2 - x_1 x_2^{-1} x_1)^{-1}$$

$1 - x_1(x_2 x_1)^{-1} x_2 = 0$, so $(1 - x_1(x_2 x_1)^{-1} x_2)^{-1}$ undefined

Some peculiarities

“dimension” / “transcendence degree”

embeddings don't increase ranks

$$\mathbb{k}\langle x_0, x_1, x_2, \dots \rangle \hookrightarrow \mathbb{k}\langle x, y \rangle, \quad \mathbb{k}\langle x_0, x_1, x_2, \dots \rangle \hookrightarrow \mathbb{k}\langle x, y \rangle$$

$$x_0 \mapsto y, \quad x_1 \mapsto [y, x], \quad x_2 \mapsto [[y, x], x], \quad \dots$$

$$[y, x] = yx - xy$$

Some peculiarities

“dimension” / “transcendence degree”

embeddings don't increase ranks

$$\mathbb{k}\langle x_0, x_1, x_2, \dots \rangle \hookrightarrow \mathbb{k}\langle x, y \rangle, \quad \mathbb{k}\langle x_0, x_1, x_2, \dots \rangle \hookrightarrow \mathbb{k}\langle x, y \rangle$$

$$x_0 \mapsto y, \quad x_1 \mapsto [y, x], \quad x_2 \mapsto [[y, x], x], \quad \dots$$

$$[y, x] = yx - xy$$

“freeness” in free algebra is weaker than **freeness** in free skew field

$$x, xy, xy^2$$

do not satisfy a nontriv poly relation

but they satisfy a nontriv rat relation $xy^2 - (xy)x^{-1}(xy) = 0$

Some peculiarities

“dimension” / “transcendence degree”

embeddings don't increase ranks

“freeness” in free algebra is weaker than **freeness** in free skew field

Good news:

Cohn⁸⁵: $\mathbb{k}\langle x_1, \dots, x_m \rangle \cong \mathbb{k}\langle y_1, \dots, y_n \rangle \iff m = n$

Schofield⁸⁵: $\mathbb{k}\langle\langle x_1, \dots, x_m \rangle\rangle \cong \mathbb{k}\langle\langle y_1, \dots, y_n \rangle\rangle \iff m = n$

Noncommutative polynomial invariants

back to the familiar example

S_2 acts on $\mathbb{k}\langle x, y \rangle$ by $x \leftrightarrow y$

Wolf³⁶: $\mathbb{k}\langle x, y \rangle^{S_2}$ is a **free** algebra on the **infinite** set

$$xy^{n-1} + yx^{n-1} \quad \text{for } n \in \mathbb{N}$$

Noncommutative polynomial invariants

are almost NEVER finitely generated

Kharchenko⁷⁸, Formanek–Dicks⁸²:

Let a finite group G act linearly on \mathbb{k}^n . Then $\mathbb{k}\langle x_1, \dots, x_n \rangle^G$ is the **free** algebra on an **infinite** set

unless the action is scaling by a primitive m^{th} root of unity, in which case it is free on n^m generators

Noncommutative rational invariants

back to the familiar example

S_2 acts on $\mathbb{k}\langle x, y \rangle$ by $x \leftrightarrow y$; assume $\text{char } \mathbb{k} \neq 2$

NC poly invariants: $x + y, (x - y)(x + y)^{n-1}(x - y)$ for $n \in \mathbb{N}$

Agler-Young¹⁴: these can be rationally expressed with only
 $f_{-1} = x + y, f_0 = (x - y)^2, f_1 = (x - y)(x + y)(x - y)$:

$$(x - y)(x + y)^n(x - y) = f_1(f_0^{-1}f_1)^{n-1} \quad n = 2, 3, \dots$$

Klep–Podlogar–Pascoe–V²⁰: $\mathbb{k}\langle x, y \rangle^{S_2}$ is free on 3 generators

Finite generation of rational invariants

Theorem (Derksen-V²⁵)

Let a finite group G act on $\mathbb{k}\langle x_1, \dots, x_n \rangle$.

The skew field $\mathbb{k}\langle x_1, \dots, x_n \rangle^G$ is generated by at most $|G|^2(n - 1) + |G|$ elements over \mathbb{k} .

- ▶ constructive
- ▶ criterion for freeness of generators we're blind in general!
- $\mathbb{k}\langle x_1, \dots, x_n \rangle^G$ is “finitely presented”
- ▶ don't know of an instance where the bound is attained

Free Noether problem

has a positive solution in the nonmodular case

Theorem (Derksen-V²⁵)

Let a finite group G act faithfully and linearly on $\mathbb{k}\langle x_1, \dots, x_n \rangle$, and $\text{char } \mathbb{k} \nmid |G|$.

The skew field $\mathbb{k}\langle x_1, \dots, x_n \rangle^G$ is free of rank $|G|(n-1) + 1$.

- ▶ Klep-Pascoe-Podlogar-V²⁰ for abelian and certain solvable G
- ▶ constructive
- ▶ char essential? not for $G = S_2$
- ▶ Nielsen–Schreier index formula for free groups?
not directly, not a coincidence

Freeness of skew subfields & Cohn's conjecture

free Lüroth problem

Schofield⁸⁵ & co: is a skew \mathbb{k} -subfield of the free skew field **free**?

Freeness of skew subfields & Cohn's conjecture

free Lüroth problem

Schofield⁸⁵ & co: is a skew \mathbb{k} -subfield of the free skew field **free**?

Conjecture (Cohn⁷⁸)

A *commutative* \mathbb{k} -subfield of the free skew field is $\cong \mathbb{k}(t)$.

- ▶ commutative subfield is of transcendence degree 1 over \mathbb{k}
- ▶ related results:

comm subalg of the free alg is $\cong \mathbb{k}[t]$

comm complete subalg of the free power series is $\cong \mathbb{k}[[t]]$

...

A nonlinear example

negative answer to Schofield

Let $\text{char } \mathbb{k} \neq 2$, and let $f \in \mathbb{k}[x]$ be a monic cubic polynomial with simple roots

Let $S_2 = \{\text{id}, \tau\}$ act on $\mathbb{k}\langle x, y \rangle$ as

$$\tau(x) = y^{-1}xy, \quad \tau(y) = y^{-1}f(x)$$

The skew field $\mathbb{k}\langle x, y \rangle^{S_2}$

- ▶ is NOT free,
- ▶ is generated by 4 (but not 3) elements

Elliptic curves in the free skew field

Cohn Conj is false

Theorem (Derksen-V²⁵)

Let $f \in \mathbb{k}[x]$ be a monic cubic polynomial with simple roots and the quad coef α . Let $r, s \in \mathbb{k}\langle x, y \rangle$ as

$$r = b^2 - c - \alpha \quad \text{and} \quad s = y - xb + br,$$

$$\text{where} \quad b = (xy - yx)^{-1}(f(x) - y^2),$$

$$c = (xy - yx)^{-1}(x^2y - yx^2).$$

Then, $r, s \notin \mathbb{k}$, $rs = sr$ and $s^2 = f(r)$.

if $\text{char } \mathbb{k} \neq 2$, this is an genus-one curve

Invariants of infinite groups

may need ∞ generators

- \mathbb{k} infinite, $G = \mathbb{k}^*$ acts on $\mathbb{k}\langle x, y \rangle$ by scaling the 1st variable:

$$\mathbb{k}\langle x, y \rangle^G = \mathbb{k}\langle x^{-r}yx^r : r \in \mathbb{Z} \rangle$$

Invariants of infinite groups

may need ∞ generators

- \mathbb{k} infinite, $G = \mathbb{k}^*$ acts on $\mathbb{k}\langle x, y \rangle$ by scaling the 1st variable:

$$\mathbb{k}\langle x, y \rangle^G = \mathbb{k}\langle x^{-r}yx^r : r \in \mathbb{Z} \rangle$$

- Intriguing example: $GL_n(\mathbb{k})$ acting linearly on $\mathbb{k}\langle x_1, \dots, x_n \rangle$

Invariants of infinite groups

may need ∞ generators

- \mathbb{k} infinite, $G = \mathbb{k}^*$ acts on $\mathbb{k}\langle x, y \rangle$ by scaling the 1st variable:

$$\mathbb{k}\langle x, y \rangle^G = \mathbb{k}\langle x^{-r}yx^r : r \in \mathbb{Z} \rangle$$

- Intriguing example: $\mathrm{GL}_n(\mathbb{k})$ acting linearly on $\mathbb{k}\langle x_1, \dots, x_n \rangle$

Podlogar²³:

$$r = (xy - yx)^{-2}(x^2y^2 - xy^2x - yx^2y + y^2x^2)$$

is GL_2 -invariant,

$$r(x, y) = r(\alpha_{11}x + \alpha_{12}y, \alpha_{21}x + \alpha_{22}y) \quad \forall \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \in \mathrm{GL}_2(\mathbb{k})$$

Open questions

- ▶ **infinite** linear reductive/Lie groups
- ▶ **modular** reps of finite groups
- ▶ symmetric group: **combinatorial free gens?**
- ▶ does **every curve** embed into the free skew field?
- ▶ is a skew subfield of the free skew field a **coproduct of curves?**