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Recap:
We want to classify holomorphic maps  between moduli spaces.


 is the unordered configuration space for  distinct points in .

.


 is the moduli space of genus  Riemann surfaces with  marked points.


Standing assumption:  in  , for technical reasons.


Will mostly focus on the case .

ℳ → 𝒩

UConfnℂ n ℂ
π1(UConfnℂ) = Bn = ⟨σ1, …, σn−1⟩

ℳg,n g n
2g + n ≥ 3 ℳg,n
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Let  be an orientable surface of genus ,                                                              
with  punctures and  boundary components.


The mapping class group  is


.


Write . If  or  are zero we omit them.


We have .


Special case: .
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Universal cover of moduli space
There is an isomorphism of complex-analytic orbifolds


.


 is called Teichmüller space, and can be regarded as an bounded domain in .


Example:  is an open domain in , and .


We can lift any holomorphic map  to a holomorphic map  
between the universal covers.

ℳg,n/Sn ≅ 𝒯g,n / Modg,n

𝒯g,n ℂ3g−3+n

𝒯1,1 ≅ ℍ ℂ Mod1,1 ≅ SL2ℤ

ℳg,n → ℳh,m 𝒯g,n → 𝒯h,m
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Monodromy of families
A holomorphic map  can be regarded


as a holomorphic family of Riemann surfaces over .


Given a closed loop  we can pull back to a family over the interval. A 
choice of trivialization defines a homeomorphism of the fiber over .


This produces a well defined homomorphism , called monodromy.


It is the same thing as the induced map on  of the original map.

B → ℳg,n

B

γ : [0,1] → B
γ(0) = γ(1)

π1(B) → Modg,n

π1
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Finiteness theorems
Fix a base Riemann surface  with finite genus, finitely many punctures.


Fix fiber type  with .


Conjecture (Shafarevich, ‘63): There are finitely many non-isomorphic, non-isotrivial 
holomorphic families of Riemann surfaces of genus  and  punctures over .


Theorem (Parshin ‘68): True when , , and  is closed.


Theorem (Arkelov, ‘71): True when , .


Theorem (Imayoshi—Shiga ‘88): True.
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Rigidity of monodromy
Imayoshi and Shiga’s proof uses another rigidity theorem that they prove.

Fix , and  as before.


Theorem (Imayoshi—Shiga ‘88): If two non-isotrivial holomorphic families of 
Riemann surfaces of type  over  have the same monodromy, then they are 
equal.


More generally (Antonakoudis—Aramayona—Souto ‘18) show a similar result for 
 any quasi-projective variety.


Corollary: Any two holomorphic maps  that induce the same 
homomorphism  have induced maps  that are 
either constant, or exactly equal.

B (g, n)

(g, n) B

B
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Classifying holomorphic maps
This suggests the following rough strategy for classifying holomorphic maps 


• Write down as many holomorphic maps  as you can.


• Classify the homomorphisms .


Lin showed the following, which is in a regime where this strategy applies.


Theorem (Lin, ‘04): For , all non-constant holomorphic maps 
 are affine equivalent to the identity.


However in general there are non-trivial homomorphisms  which are 
not induced by holomorphic maps.

ℳ → 𝒩

ℳ → 𝒩

π1(ℳ) → π1(𝒩)

n ≥ 5
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Non-holomorphic homomorphisms
There is a natural inclusion homomorphism .


It is induced by a continuous map  that “adds a point at ”.
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It is not induced by a holomorphic map.


Why?

Bn ↪ Bn+1

UConfnℂ → UConfn+1ℂ ∞

{x1, …, xn} ↦ {x1, …, xn, |x1 | + ⋯ + |xn | + 1}
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Mapping class group actions
 acts on the simple closed curves in a 

surface , up to isotopy.


A multicurve is a finite set of pairwise disjoint and 
non-isotopic simple closed curves in .


It is essential if none of these curves are isotopic to 
a boundary component or a puncture.


A homomorphism  is reducible if 
there is a multicurve in  preserved up to isotopy 
by . If not reducible, then say irreducible.

Mod(Σ)
Σ

Σ

φ : G → Mod(Σ)
Σ

φ(G) Σ1
0,n
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Irreducibility is a requirement
Theorem (de Pool—Souto, ‘24): If  is an irreducible quasi-projective variety, and 

 is a non-constant holomorphic map, then  is 
irreducible.


Suffices to prove for Riemann surfaces  of finite type.


(McMullen, ‘00) proved this for closed Riemann surfaces .


Corollary: A holomorphic map  must induce an irreducible 
homomorphism .

M
F : M → ℳg,n F* : π1(M) → Modg,n

M

M

f : UConfnℂ → UConfmℂ
f* : Bn → Bm
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Other results
Theorem (Chen—Kordek—Margalit, ‘23): If , and , and  
is irreducible and non-cyclic, then  and  is center equivalent to the identity.


They conjecture the  bound is not necessary.


Theorem (Chen—Salter, ‘23): If , and , then every holomorphic map 
 is affine equivalent to the identity or a constant map.

n ≥ 5 m ≤ 2n φ : Bn → Bm
m = n φ

m ≤ 2n

n ≥ 5 m ≤ 2n
UConfnℂ → UConfmℂ
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What about n = 3 or 4?
,


where  and .


We obtain a wealth of endomorphisms of  via maps of the form ( ):


, .


Theorem (H—Schillewaert, ‘23): These provide infinitely many center-inequivalent 
irreducible homomorphisms .


We can precompose each of these with Ferrari’s map  to obtain a wealth 
of irreducible homomorphisms .

B3 = ⟨σ1, σ2 ∣ σ1σ2σ1 = σ2σ1σ2⟩ = ⟨α, β ∣ α3 = β2⟩

α = σ1σ2 β = σ1σ2σ1

B3 g, h ∈ B3

α ↦ gαg−1 β ↦ hβh−1

B3 → B3

R* : B4 → B3
B4 → B3
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Multitwists
If we let  be the curves in a multicurve on an orientable surface , then the 
Dehn twists  all commute in .


We call an element of the subgroup  a multitwist.

γ1, …, γn Σ
Tγ1

, …, Tγn
Mod(Σ)

⟨Tγ1
, …, Tγn

⟩ ≅ ℤn
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Teichmüller metric
There is a metric  on  called the Teichmüller metric, preserved by .


Theorem (Royden ‘71, Earle—Kra, ‘74) If , and  is a Riemann surface 
with universal cover , then every holomorphic map  is distance non-
increasing with respect to  and .


For  we may define the translation length to be


.


Theorem (Bers, ‘78)  if and only if  is a multitwist for some .

dTeich 𝒯g,n Modg,n

2g + n ≥ 3 B
B̃ ≅ ℍ B → ℳg,n

dHyp dTeich

f ∈ Modg,n

τ( f ) := inf
x∈𝒯g,n

dTeich(x, f(x))

τ( f ) = 0 f k k ≥ 1



Image of standard braid generators
Proposition: If  is holomorphic, and  is the 
induced homomorphism, then  is a root of a multitwist in , for all .


f : UConfnℂ → UConfmℂ f* : Bn → Bm
f*(σi) Bm 1 ≤ i < n



Image of standard braid generators
Proposition: If  is holomorphic, and  is the 
induced homomorphism, then  is a root of a multitwist in , for all .


Proof sketch:

f : UConfnℂ → UConfmℂ f* : Bn → Bm
f*(σi) Bm 1 ≤ i < n



Elliptic curve constructions
Given , can construct an elliptic curve


.


{x1, x2, x3} ∈ UConf3ℂ

y2 = (x − x1)(x − x2)(x − x3)



Elliptic curve constructions
Given , can construct an elliptic curve


.


Get a holomorphic map  by


{x1, x2, x3} ∈ UConf3ℂ

y2 = (x − x1)(x − x2)(x − x3)

Ψk : UConf3ℂ → UConfmk
ℂ

Ψk({x1, x2, x3}) = {x-coordinates of points of order k}



Example: Ψ3 : UConf3ℂ → UConf4ℂ



Example: Ψ3 : UConf3ℂ → UConf4ℂ



Theorem: (H—Schillewaert, ‘23)


If  is holomorphic, , and , then it is 
equivalent to one of the following


• a constant map,


• the identity map, 


• 


• 


•

f : UConfnℂ → UConfmℂ n ≥ 3 m ≤ max{n,4}

R : UConf4ℂ → UConf3ℂ

Ψ3 : UConf3ℂ → UConf4ℂ

Ψ3 ∘ R : UConf4ℂ → UConf4ℂ



Example: Ψ4 : UConf3ℂ → UConf6ℂ



Example: Ψ4 : UConf3ℂ → UConf6ℂ



Example: Ψ5 : UConf3ℂ → UConf12ℂ



Example: Ψ5 : UConf3ℂ → UConf12ℂ



Example: Ψ6 : UConf3ℂ → UConf12ℂ



Example: Ψ6 : UConf3ℂ → UConf12ℂ



General elliptic curve construction:


For , define  by





1 < k1 < ⋯ < kℓ Ψk1,…,kℓ
: UConf3ℂ → UConfmk1+⋯+mkℓ

ℂ

Ψk1,…,kℓ
(X) := Ψk1

(X) ∪ ⋯ ∪ Ψkℓ
(X)



General elliptic curve construction:


For , define  by





Open problem:


Is every holomorphic map between unordered configuration spaces of points in  
equivalent to one of the following types?


• Constant map


• Identity map


•  or  for some .

1 < k1 < ⋯ < kℓ Ψk1,…,kℓ
: UConf3ℂ → UConfmk1+⋯+mkℓ

ℂ

Ψk1,…,kℓ
(X) := Ψk1

(X) ∪ ⋯ ∪ Ψkℓ
(X)

ℂ

Ψk1,…,kℓ
R ∘ Ψk1,…,kℓ

1 < k1 < ⋯ < kℓ



Thank you!


