

Holomorphic rigidity: continued

Peter Huxford, Rice University

Recap:

We want to classify holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$ between moduli spaces.

Recap:

We want to classify holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$ between moduli spaces.

$\text{UConf}_n \mathbb{C}$ is the unordered configuration space for n distinct points in \mathbb{C} .

Recap:

We want to classify holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$ between moduli spaces.

$\text{UConf}_n \mathbb{C}$ is the unordered configuration space for n distinct points in \mathbb{C} .

$$\pi_1(\text{UConf}_n \mathbb{C}) = B_n = \langle \sigma_1, \dots, \sigma_{n-1} \rangle.$$

Recap:

We want to classify holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$ between moduli spaces.

$\text{UConf}_n \mathbb{C}$ is the unordered configuration space for n distinct points in \mathbb{C} .

$$\pi_1(\text{UConf}_n \mathbb{C}) = B_n = \langle \sigma_1, \dots, \sigma_{n-1} \rangle.$$

$\mathcal{M}_{g,n}$ is the moduli space of genus g Riemann surfaces with n marked points.

Recap:

We want to classify holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$ between moduli spaces.

$\text{UConf}_n \mathbb{C}$ is the unordered configuration space for n distinct points in \mathbb{C} .

$$\pi_1(\text{UConf}_n \mathbb{C}) = B_n = \langle \sigma_1, \dots, \sigma_{n-1} \rangle.$$

$\mathcal{M}_{g,n}$ is the moduli space of genus g Riemann surfaces with n marked points.

Standing assumption: $2g + n \geq 3$ in $\mathcal{M}_{g,n}$, for technical reasons.

Recap:

We want to classify holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$ between moduli spaces.

$\text{UConf}_n \mathbb{C}$ is the unordered configuration space for n distinct points in \mathbb{C} .

$$\pi_1(\text{UConf}_n \mathbb{C}) = B_n = \langle \sigma_1, \dots, \sigma_{n-1} \rangle.$$

$\mathcal{M}_{g,n}$ is the moduli space of genus g Riemann surfaces with n marked points.

Standing assumption: $2g + n \geq 3$ in $\mathcal{M}_{g,n}$, for technical reasons.

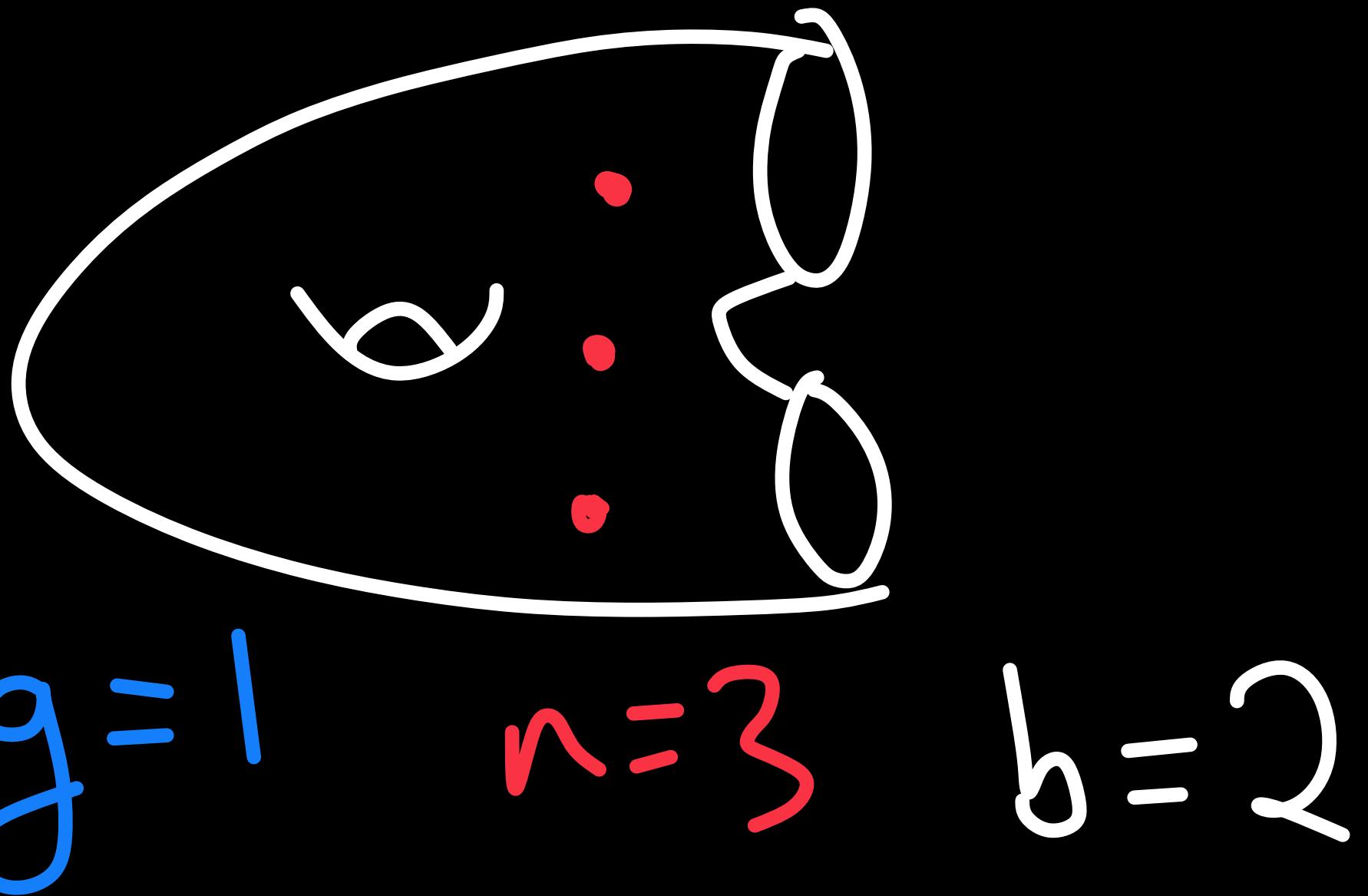
Will mostly focus on the case $\text{UConf}_n \mathbb{C} \rightarrow \text{UConf}_m \mathbb{C}$.

Mapping class groups

Let $\Sigma_{g,n}^b$ be an orientable surface of genus g ,
with n punctures and b boundary components.

Mapping class groups

Let $\Sigma_{g,n}^b$ be an orientable surface of genus g ,
with n punctures and b boundary components.

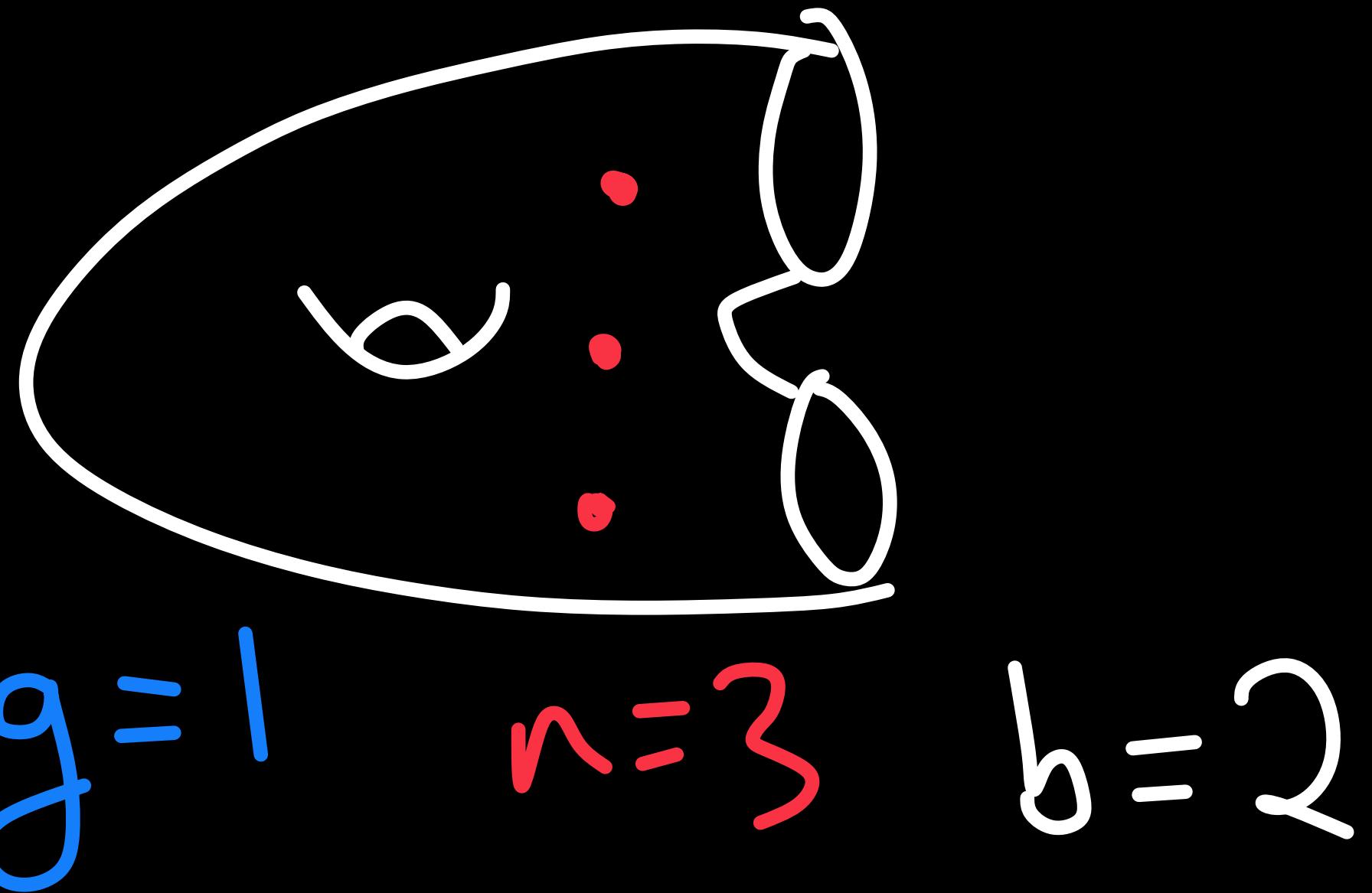


Mapping class groups

Let $\Sigma_{g,n}^b$ be an orientable surface of genus g ,
with n punctures and b boundary components.

The mapping class group $\text{Mod}(\Sigma_{g,n}^b)$ is

$$\text{Mod}(\Sigma_{g,n}^b) = \pi_0 \left(\{f \in \text{Homeo}^+(\Sigma_{g,n}^b) : f|_{\partial\Sigma} = \text{id}_{\partial\Sigma}\} \right).$$



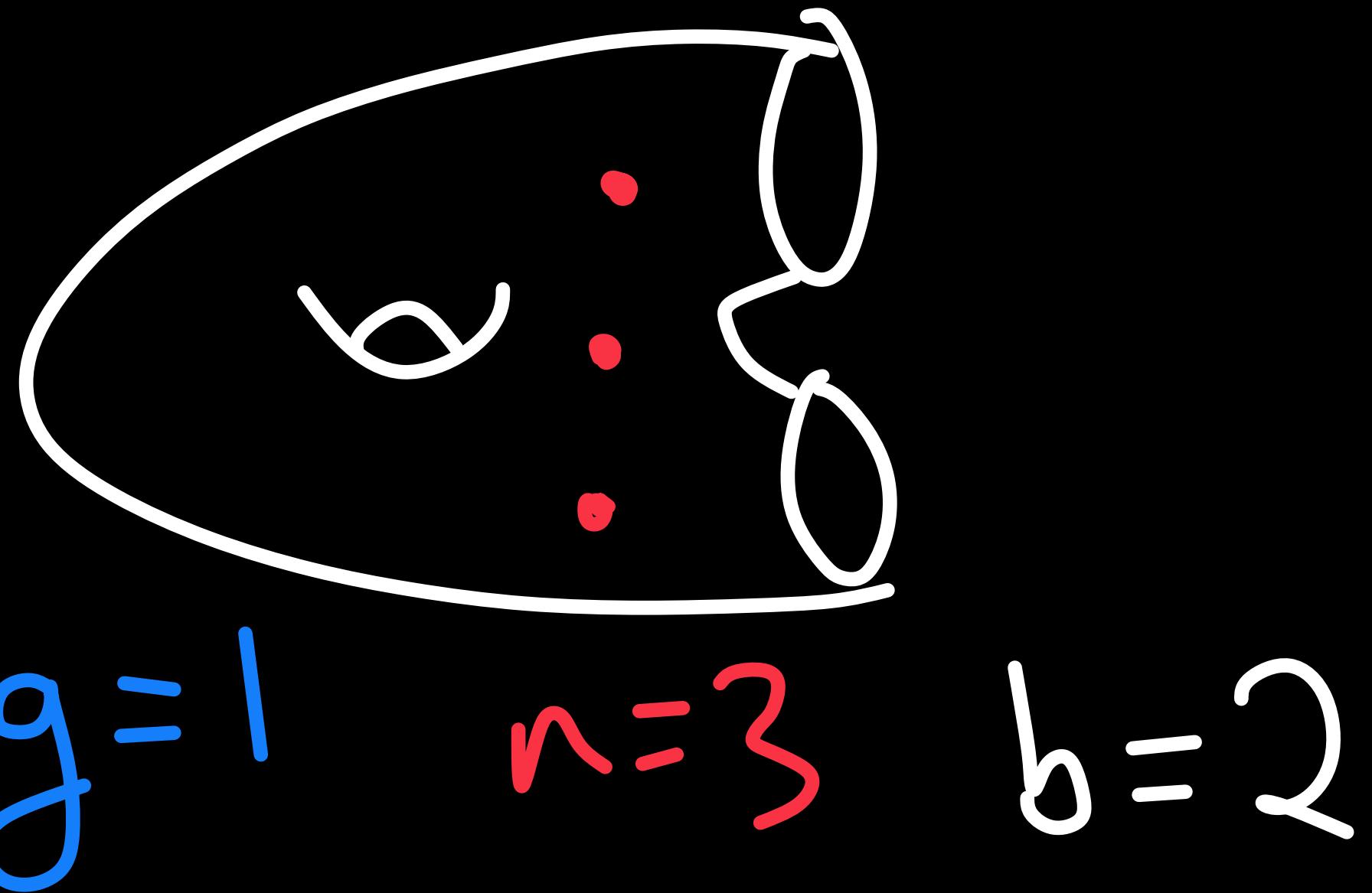
Mapping class groups

Let $\Sigma_{g,n}^b$ be an orientable surface of genus g ,
with n punctures and b boundary components.

The mapping class group $\text{Mod}(\Sigma_{g,n}^b)$ is

$$\text{Mod}(\Sigma_{g,n}^b) = \pi_0 \left(\{f \in \text{Homeo}^+(\Sigma_{g,n}^b) : f|_{\partial\Sigma} = \text{id}_{\partial\Sigma}\} \right).$$

Write $\text{Mod}_{g,n}^b = \text{Mod}(\Sigma_{g,n}^b)$. If n or b are zero we omit them.



Mapping class groups

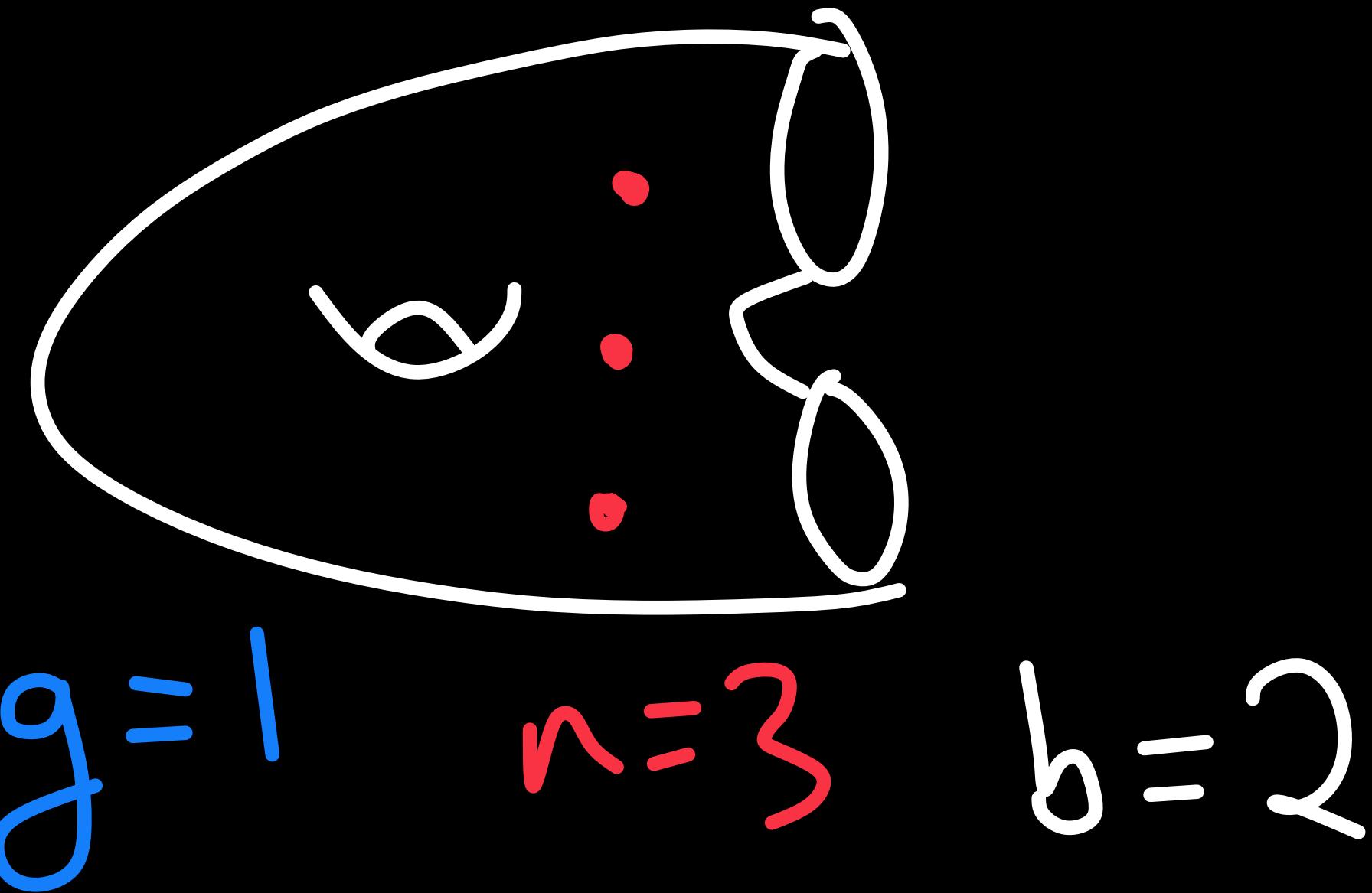
Let $\Sigma_{g,n}^b$ be an orientable surface of genus g ,
with n punctures and b boundary components.

The mapping class group $\text{Mod}(\Sigma_{g,n}^b)$ is

$$\text{Mod}(\Sigma_{g,n}^b) = \pi_0 \left(\{f \in \text{Homeo}^+(\Sigma_{g,n}^b) : f|_{\partial\Sigma} = \text{id}_{\partial\Sigma}\} \right).$$

Write $\text{Mod}_{g,n}^b = \text{Mod}(\Sigma_{g,n}^b)$. If n or b are zero we omit them.

We have $\pi_1(\mathcal{M}_{g,n}/S_n) \cong \text{Mod}_{g,n}$.



Mapping class groups

Let $\Sigma_{g,n}^b$ be an orientable surface of genus g ,
with n punctures and b boundary components.

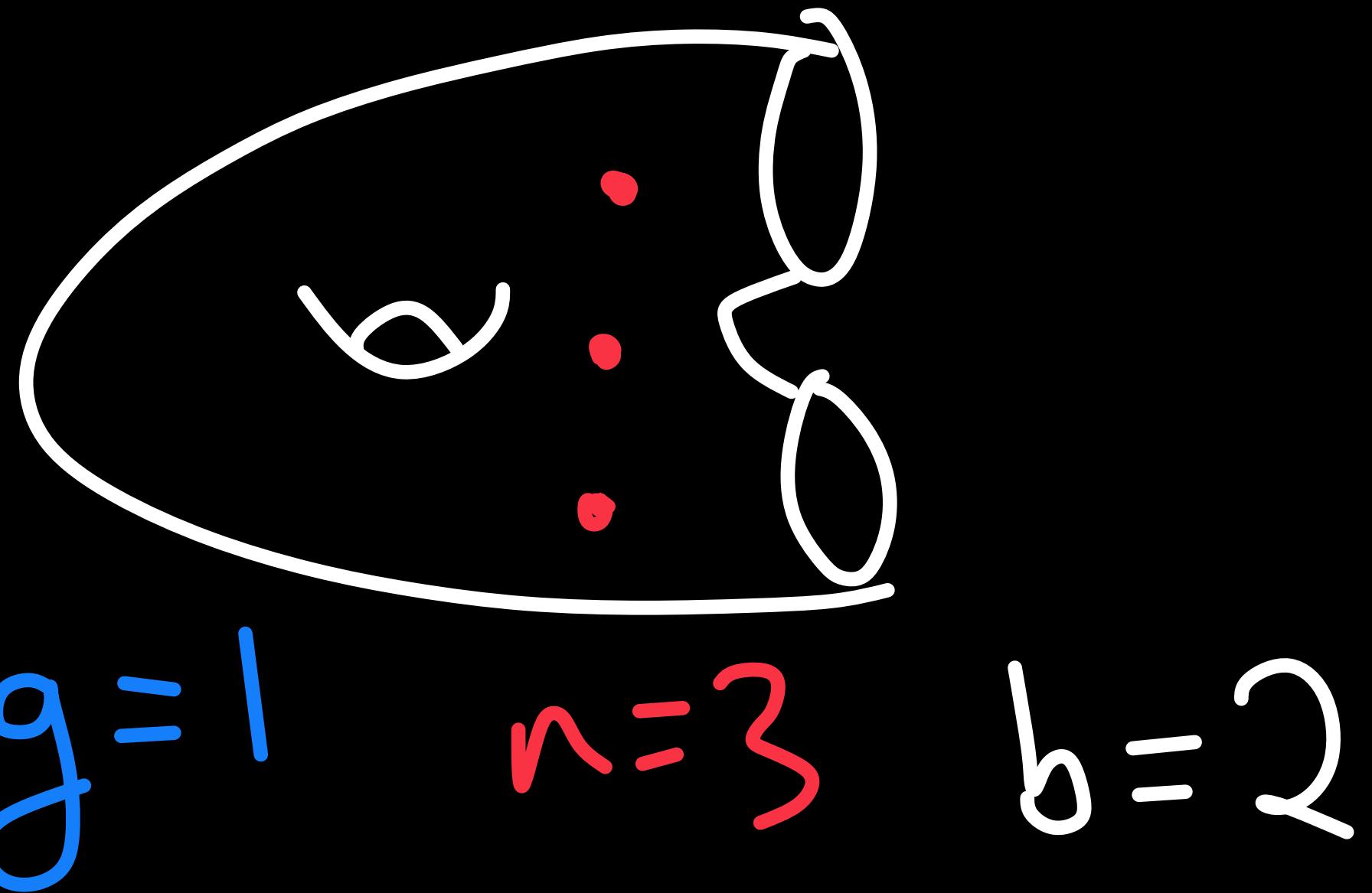
The mapping class group $\text{Mod}(\Sigma_{g,n}^b)$ is

$$\text{Mod}(\Sigma_{g,n}^b) = \pi_0 \left(\{f \in \text{Homeo}^+(\Sigma_{g,n}^b) : f|_{\partial\Sigma} = \text{id}_{\partial\Sigma}\} \right).$$

Write $\text{Mod}_{g,n}^b = \text{Mod}(\Sigma_{g,n}^b)$. If n or b are zero we omit them.

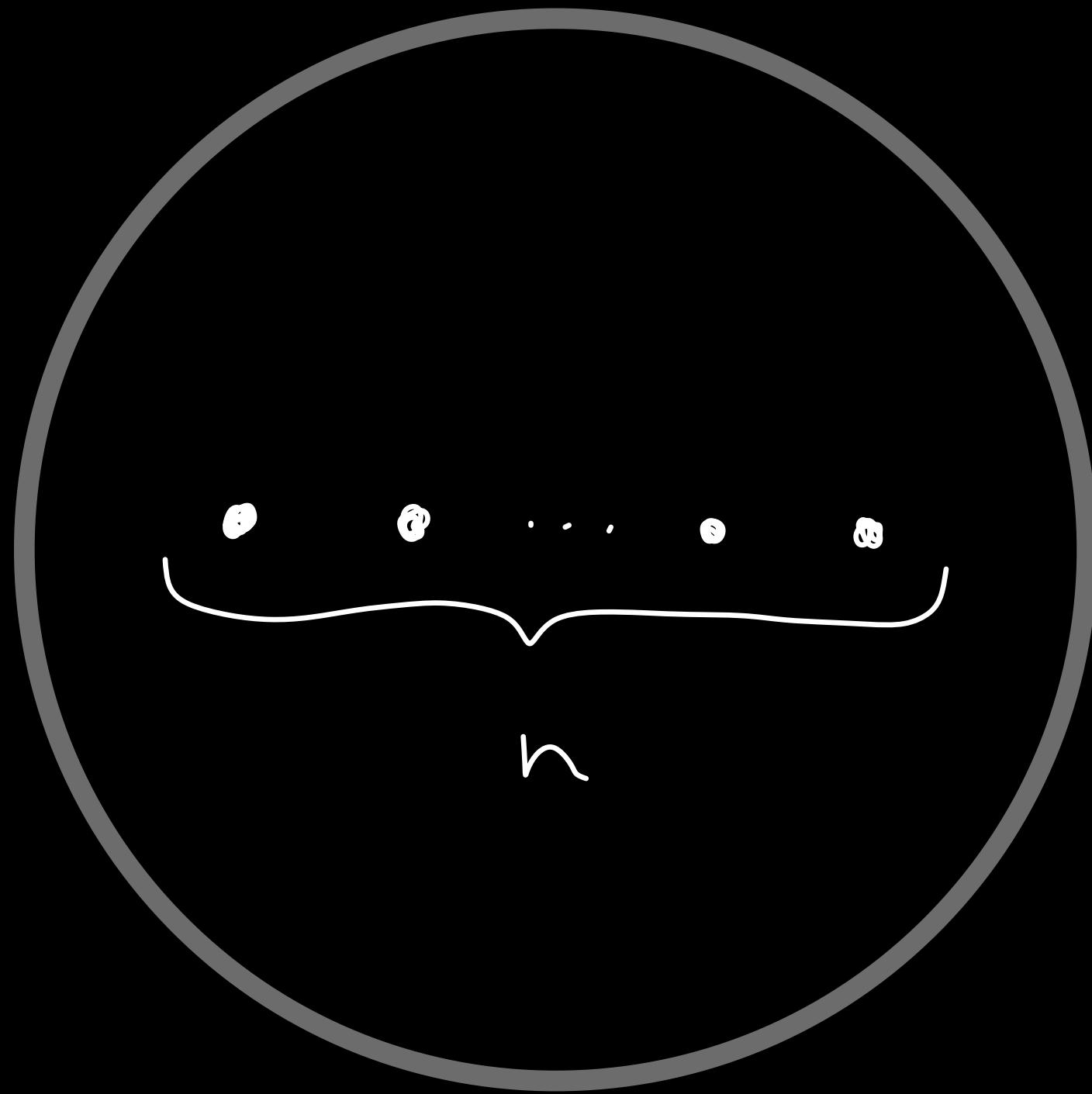
We have $\pi_1(\mathcal{M}_{g,n}/S_n) \cong \text{Mod}_{g,n}$.

Special case: $\text{Mod}_{1,1} \cong \text{SL}_2 \mathbb{Z}$.



Braid group as mapping class group

The braid group is also a mapping class group.

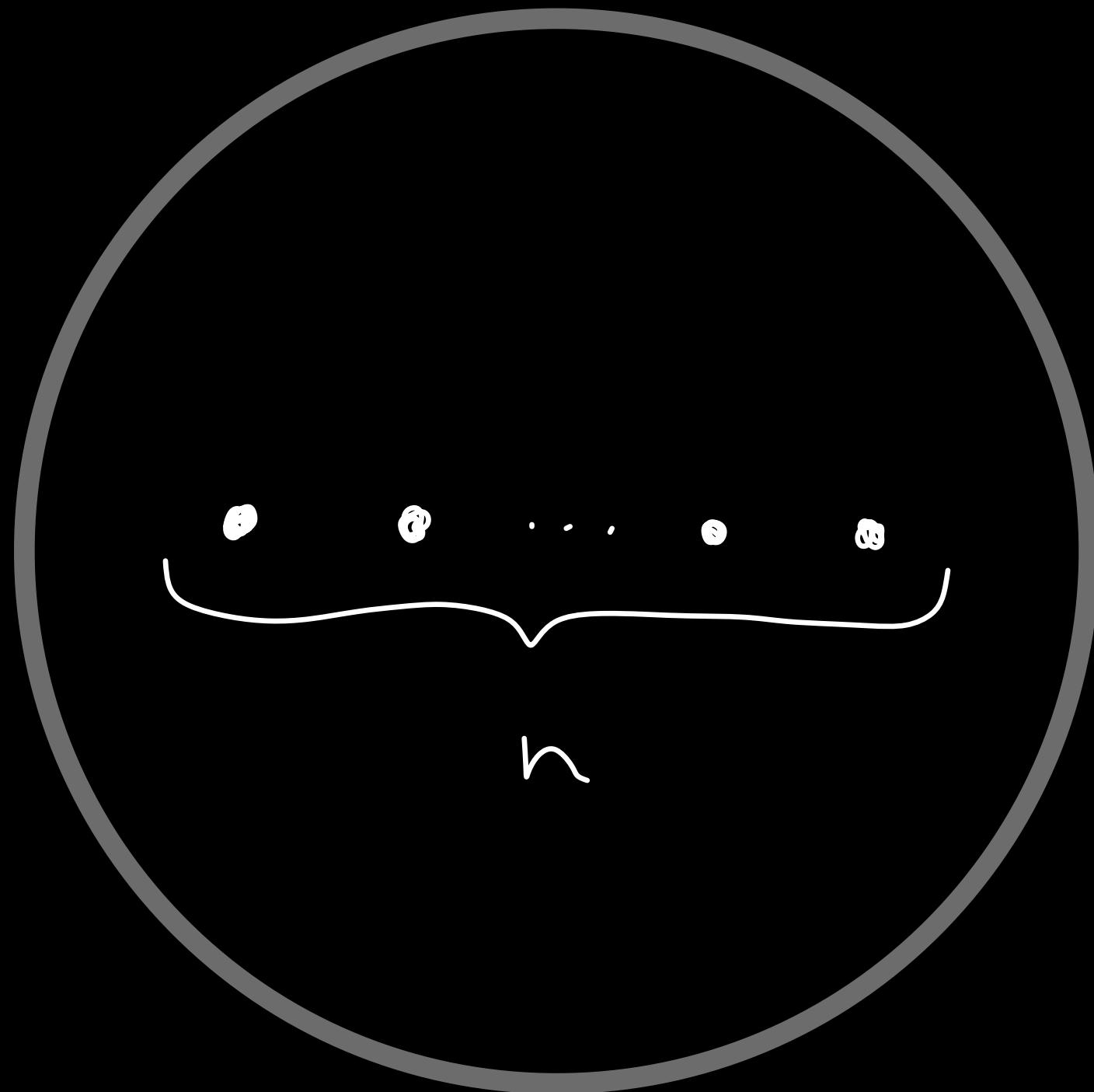


$$\Sigma_{0,n}^1$$

Braid group as mapping class group

The braid group is also a mapping class group.

The natural map $B_n \rightarrow \text{Mod}_{0,n}^1$ is an isomorphism.



$$\Sigma_{0,n}^1$$

Universal cover of moduli space

There is an isomorphism of complex-analytic orbifolds

$$\mathcal{M}_{g,n}/S_n \cong \mathcal{T}_{g,n} \bigm/ \text{Mod}_{g,n}.$$

$\mathcal{T}_{g,n}$ is called *Teichmüller space*, and can be regarded as an bounded domain in \mathbb{C}^{3g-3+n} .

Universal cover of moduli space

There is an isomorphism of complex-analytic orbifolds

$$\mathcal{M}_{g,n}/S_n \cong \mathcal{T}_{g,n} \diagup \text{Mod}_{g,n}.$$

$\mathcal{T}_{g,n}$ is called *Teichmüller space*, and can be regarded as an bounded domain in \mathbb{C}^{3g-3+n} .

Example: $\mathcal{T}_{1,1} \cong \mathbb{H}$ is an open domain in \mathbb{C} , and $\text{Mod}_{1,1} \cong \text{SL}_2 \mathbb{Z}$.

Universal cover of moduli space

There is an isomorphism of complex-analytic orbifolds

$$\mathcal{M}_{g,n}/S_n \cong \mathcal{T}_{g,n} \bigm/ \text{Mod}_{g,n}.$$

$\mathcal{T}_{g,n}$ is called *Teichmüller space*, and can be regarded as an bounded domain in \mathbb{C}^{3g-3+n} .

Example: $\mathcal{T}_{1,1} \cong \mathbb{H}$ is an open domain in \mathbb{C} , and $\text{Mod}_{1,1} \cong \text{SL}_2 \mathbb{Z}$.

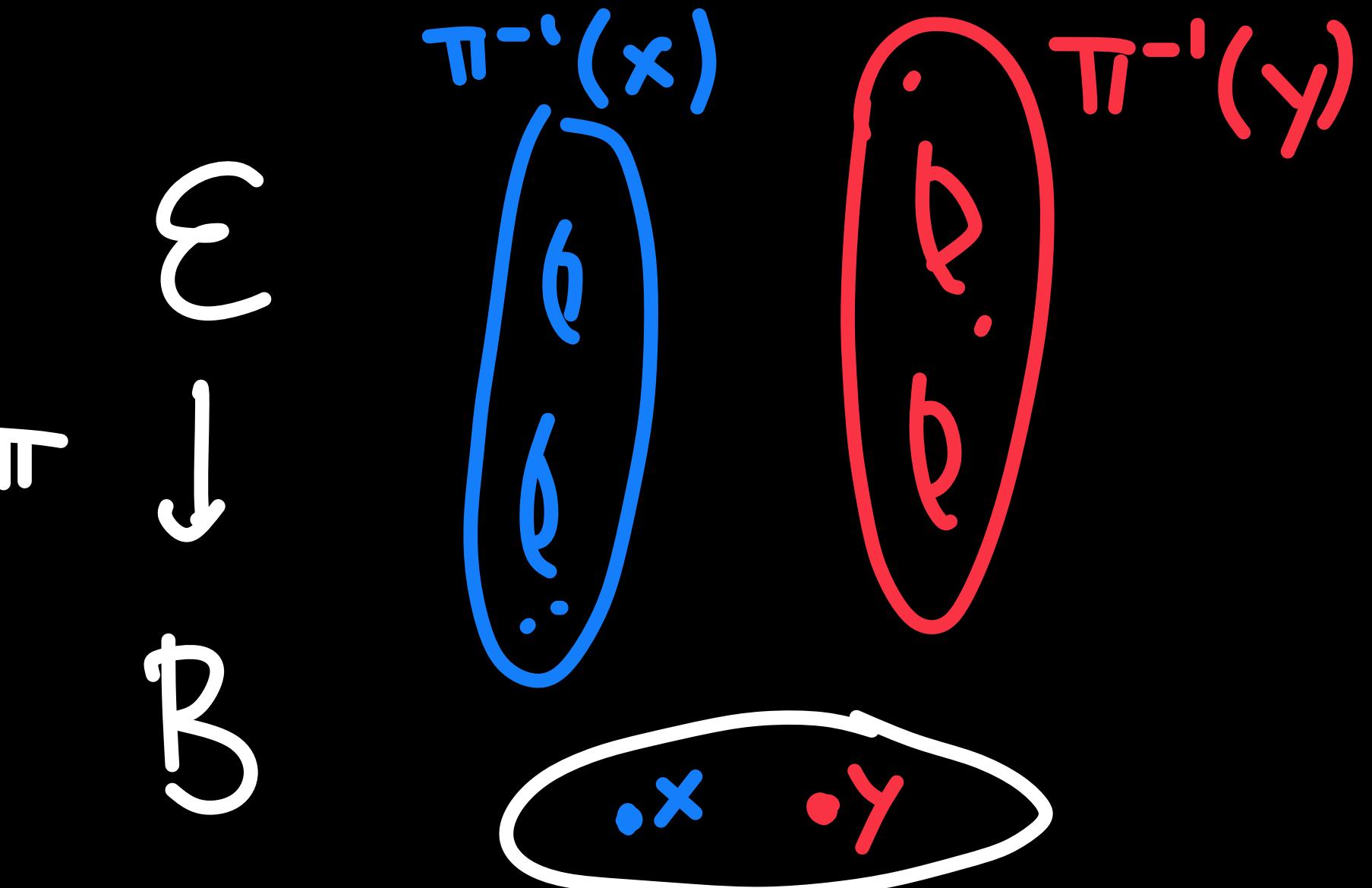
We can lift any holomorphic map $\mathcal{M}_{g,n} \rightarrow \mathcal{M}_{h,m}$ to a holomorphic map $\mathcal{T}_{g,n} \rightarrow \mathcal{T}_{h,m}$ between the universal covers.

Monodromy of families

A holomorphic map $B \rightarrow \mathcal{M}_{g,n}$ can be regarded as a holomorphic family of Riemann surfaces over B .

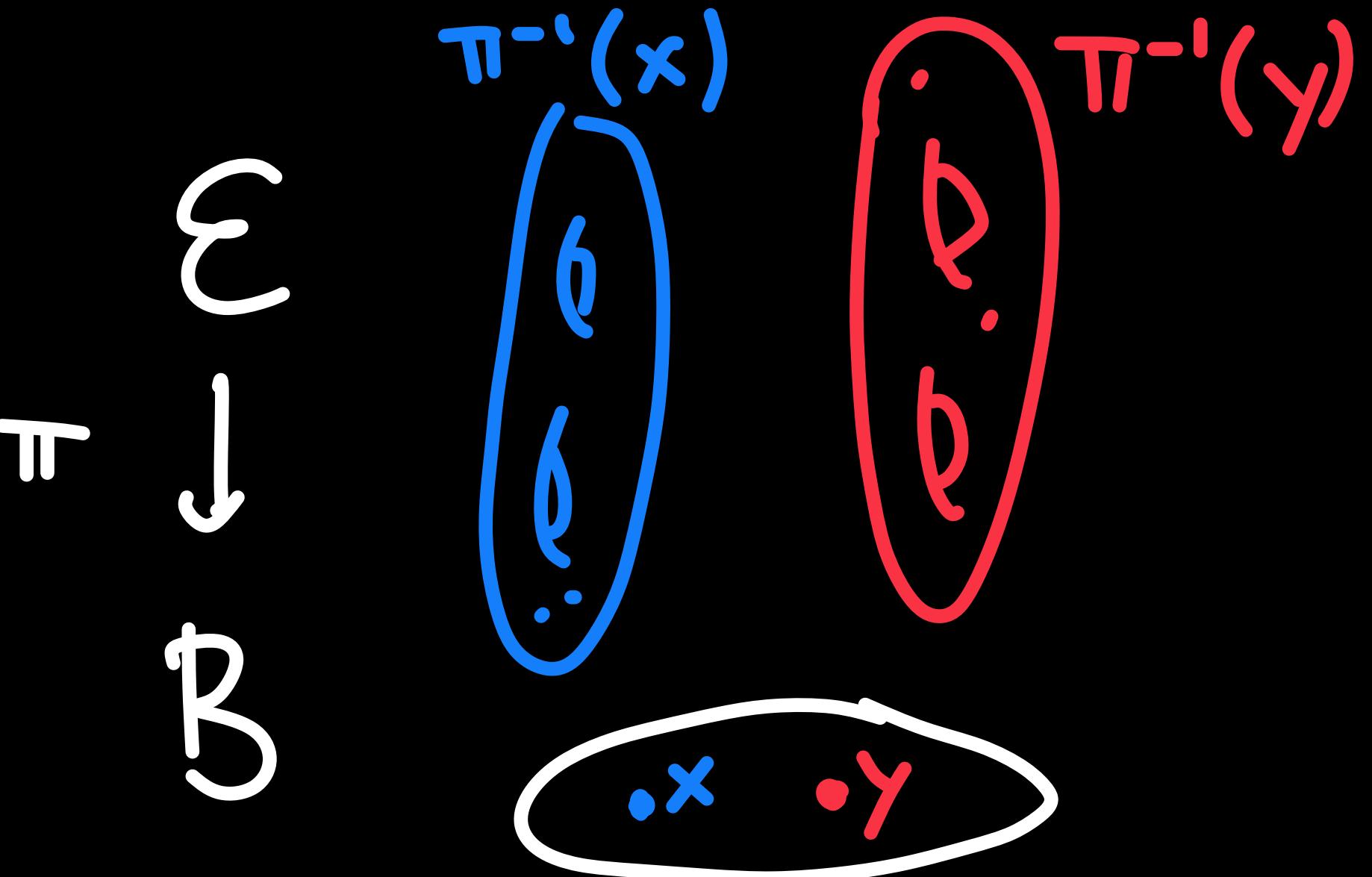
Monodromy of families

A holomorphic map $B \rightarrow \mathcal{M}_{g,n}$ can be regarded as a holomorphic family of Riemann surfaces over B .



Monodromy of families

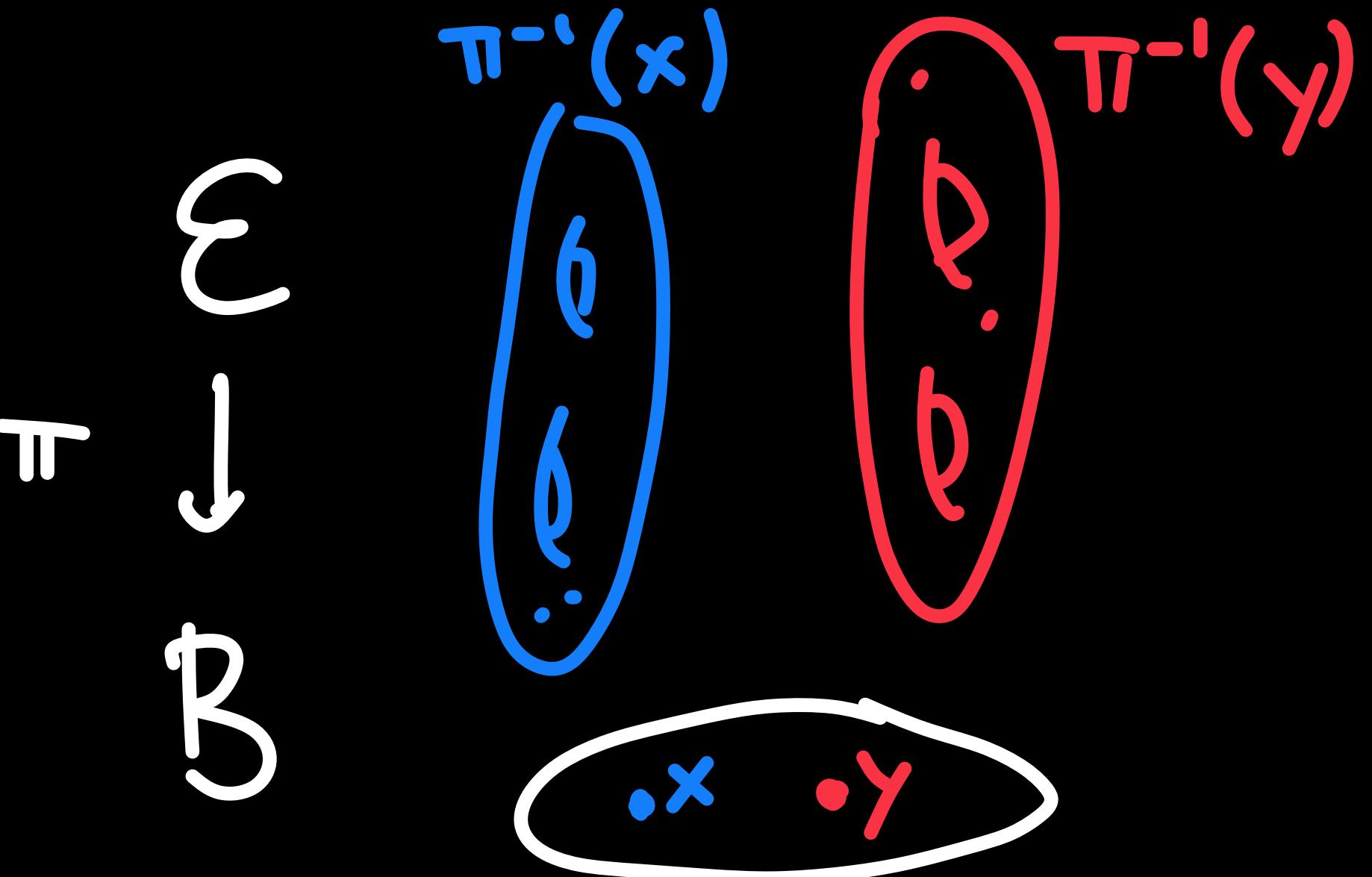
A holomorphic map $B \rightarrow \mathcal{M}_{g,n}$ can be regarded as a holomorphic family of Riemann surfaces over B .



Given a closed loop $\gamma: [0,1] \rightarrow B$ we can pull back to a family over the interval. A choice of trivialization defines a homeomorphism of the fiber over $\gamma(0) = \gamma(1)$.

Monodromy of families

A holomorphic map $B \rightarrow \mathcal{M}_{g,n}$ can be regarded as a holomorphic family of Riemann surfaces over B .



Given a closed loop $\gamma: [0,1] \rightarrow B$ we can pull back to a family over the interval. A choice of trivialization defines a homeomorphism of the fiber over $\gamma(0) = \gamma(1)$.

This produces a well defined homomorphism $\pi_1(B) \rightarrow \text{Mod}_{g,n}$, called *monodromy*.

It is the same thing as the induced map on π_1 of the original map.

Finiteness theorems

Fix a base Riemann surface B with finite genus, finitely many punctures.

Fix fiber type (g, n) with $2g + n \geq 3$.

Finiteness theorems

Fix a base Riemann surface B with finite genus, finitely many punctures.

Fix fiber type (g, n) with $2g + n \geq 3$.

Conjecture (Shafarevich, '63): There are finitely many non-isomorphic, non-isotrivial holomorphic families of Riemann surfaces of genus g and n punctures over B .

Finiteness theorems

Fix a base Riemann surface B with finite genus, finitely many punctures.

Fix fiber type (g, n) with $2g + n \geq 3$.

Conjecture (Shafarevich, '63): There are finitely many non-isomorphic, non-isotrivial holomorphic families of Riemann surfaces of genus g and n punctures over B .

Theorem (Parshin '68): True when $g \geq 2$, $n = 0$, and B is closed.

Finiteness theorems

Fix a base Riemann surface B with finite genus, finitely many punctures.

Fix fiber type (g, n) with $2g + n \geq 3$.

Conjecture (Shafarevich, '63): There are finitely many non-isomorphic, non-isotrivial holomorphic families of Riemann surfaces of genus g and n punctures over B .

Theorem (Parshin '68): True when $g \geq 2$, $n = 0$, and B is closed.

Theorem (Arkelov, '71): True when $g \geq 2$, $n = 0$.

Finiteness theorems

Fix a base Riemann surface B with finite genus, finitely many punctures.

Fix fiber type (g, n) with $2g + n \geq 3$.

Conjecture (Shafarevich, '63): There are finitely many non-isomorphic, non-isotrivial holomorphic families of Riemann surfaces of genus g and n punctures over B .

Theorem (Parshin '68): True when $g \geq 2$, $n = 0$, and B is closed.

Theorem (Arkelov, '71): True when $g \geq 2$, $n = 0$.

Theorem (Imayoshi—Shiga '88): True.

Rigidity of monodromy

Imayoshi and Shiga's proof uses another rigidity theorem that they prove.

Fix B , and (g, n) as before.

Rigidity of monodromy

Imayoshi and Shiga's proof uses another rigidity theorem that they prove.

Fix B , and (g, n) as before.

Theorem (Imayoshi—Shiga '88): If two non-isotrivial holomorphic families of Riemann surfaces of type (g, n) over B have the same monodromy, then they are equal.

Rigidity of monodromy

Imayoshi and Shiga's proof uses another rigidity theorem that they prove.

Fix B , and (g, n) as before.

Theorem (Imayoshi—Shiga ‘88): If two non-isotrivial holomorphic families of Riemann surfaces of type (g, n) over B have the same monodromy, then they are equal.

More generally (Antonakoudis—Aramayona—Souto ‘18) show a similar result for B any quasi-projective variety.

Rigidity of monodromy

Imayoshi and Shiga's proof uses another rigidity theorem that they prove.

Fix B , and (g, n) as before.

Theorem (Imayoshi—Shiga '88): If two non-isotrivial holomorphic families of Riemann surfaces of type (g, n) over B have the same monodromy, then they are equal.

More generally (Antonakoudis—Aramayona—Souto '18) show a similar result for B any quasi-projective variety.

Corollary: Any two holomorphic maps $\mathrm{UConf}_n\mathbb{C} \rightarrow \mathrm{UConf}_m\mathbb{C}$ that induce the same homomorphism $B_n \rightarrow B_m$ have induced maps $\mathrm{UConf}_n\mathbb{C} \rightarrow (\mathrm{UConf}_m\mathbb{C})/\mathrm{Aff}$ that are either constant, or exactly equal.

Summary

Two holomorphic maps $f, g: \mathrm{UConf}_n \mathbb{C} \rightarrow \mathrm{UConf}_m \mathbb{C}$ are *affine equivalent* if they define the same map $\mathrm{UConf}_n \mathbb{C} \rightarrow (\mathrm{UConf}_m \mathbb{C})/\mathrm{Aff}$.

Summary

Two holomorphic maps $f, g: \mathrm{UConf}_n \mathbb{C} \rightarrow \mathrm{UConf}_m \mathbb{C}$ are *affine equivalent* if they define the same map $\mathrm{UConf}_n \mathbb{C} \rightarrow (\mathrm{UConf}_m \mathbb{C})/\mathrm{Aff}$.

In this talk, *non-constant* means not affine equivalent to a constant map.

Summary

Two holomorphic maps $f, g: \mathrm{UConf}_n \mathbb{C} \rightarrow \mathrm{UConf}_m \mathbb{C}$ are *affine equivalent* if they define the same map $\mathrm{UConf}_n \mathbb{C} \rightarrow (\mathrm{UConf}_m \mathbb{C})/\mathrm{Aff}$.

In this talk, *non-constant* means not affine equivalent to a constant map.

$\{\text{non-constant holomorphic } f: \mathrm{UConf}_n \mathbb{C} \rightarrow \mathrm{UConf}_m \mathbb{C}\} / \text{affine equivalence}$

Summary

Two holomorphic maps $f, g: \mathrm{UConf}_n \mathbb{C} \rightarrow \mathrm{UConf}_m \mathbb{C}$ are *affine equivalent* if they define the same map $\mathrm{UConf}_n \mathbb{C} \rightarrow (\mathrm{UConf}_m \mathbb{C})/\mathrm{Aff}$.

In this talk, *non-constant* means not affine equivalent to a constant map.

↗ {non-constant holomorphic $f: \mathrm{UConf}_n \mathbb{C} \rightarrow \mathrm{UConf}_m \mathbb{C}$ } / affine equivalence

finite set

Summary

Two holomorphic maps $f, g: \mathrm{UConf}_n \mathbb{C} \rightarrow \mathrm{UConf}_m \mathbb{C}$ are *affine equivalent* if they define the same map $\mathrm{UConf}_n \mathbb{C} \rightarrow (\mathrm{UConf}_m \mathbb{C})/\mathrm{Aff}$.

In this talk, *non-constant* means not affine equivalent to a constant map.

Two homomorphisms $\varphi, \psi: B_n \rightarrow B_m$ are *center equivalent* if, up to post-composition by an element of $\mathrm{Aut}(B_m)$, they define the same map $B_n \rightarrow B_m/Z(B_m)$.

→ $\{\text{non-constant holomorphic } f: \mathrm{UConf}_n \mathbb{C} \rightarrow \mathrm{UConf}_m \mathbb{C}\} / \text{affine equivalence}$

finite set

Summary

Two holomorphic maps $f, g: \mathrm{UConf}_n \mathbb{C} \rightarrow \mathrm{UConf}_m \mathbb{C}$ are *affine equivalent* if they define the same map $\mathrm{UConf}_n \mathbb{C} \rightarrow (\mathrm{UConf}_m \mathbb{C})/\mathrm{Aff}$.

In this talk, *non-constant* means not affine equivalent to a constant map.

Two homomorphisms $\varphi, \psi: B_n \rightarrow B_m$ are *center equivalent* if, up to post-composition by an element of $\mathrm{Aut}(B_m)$, they define the same map $B_n \rightarrow B_m/Z(B_m)$.

→ $\{ \text{non-constant holomorphic } f: \mathrm{UConf}_n \mathbb{C} \rightarrow \mathrm{UConf}_m \mathbb{C} \} / \text{affine equivalence}$

finite set

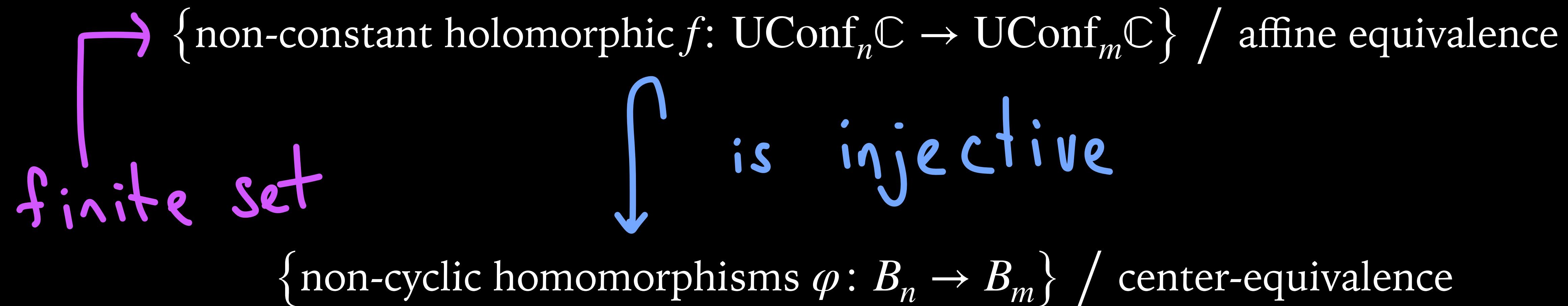
$\{ \text{non-cyclic homomorphisms } \varphi: B_n \rightarrow B_m \} / \text{center-equivalence}$

Summary

Two holomorphic maps $f, g: \mathrm{UConf}_n \mathbb{C} \rightarrow \mathrm{UConf}_m \mathbb{C}$ are *affine equivalent* if they define the same map $\mathrm{UConf}_n \mathbb{C} \rightarrow (\mathrm{UConf}_m \mathbb{C})/\mathrm{Aff}$.

In this talk, *non-constant* means not affine equivalent to a constant map.

Two homomorphisms $\varphi, \psi: B_n \rightarrow B_m$ are *center equivalent* if, up to post-composition by an element of $\mathrm{Aut}(B_m)$, they define the same map $B_n \rightarrow B_m/Z(B_m)$.



Classifying holomorphic maps

This suggests the following rough strategy for classifying holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$

Classifying holomorphic maps

This suggests the following rough strategy for classifying holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$

- Write down as many holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$ as you can.

Classifying holomorphic maps

This suggests the following rough strategy for classifying holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$

- Write down as many holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$ as you can.
- Classify the homomorphisms $\pi_1(\mathcal{M}) \rightarrow \pi_1(\mathcal{N})$.

Classifying holomorphic maps

This suggests the following rough strategy for classifying holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$

- Write down as many holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$ as you can.
- Classify the homomorphisms $\pi_1(\mathcal{M}) \rightarrow \pi_1(\mathcal{N})$.

Lin showed the following, which is in a regime where this strategy applies.

Classifying holomorphic maps

This suggests the following rough strategy for classifying holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$

- Write down as many holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$ as you can.
- Classify the homomorphisms $\pi_1(\mathcal{M}) \rightarrow \pi_1(\mathcal{N})$.

Lin showed the following, which is in a regime where this strategy applies.

Theorem (Lin, '04): For $n \geq 5$, all non-constant holomorphic maps

$\text{UConf}_n \mathbb{C} \rightarrow \text{UConf}_n \mathbb{C}$ are affine equivalent to the identity.

Classifying holomorphic maps

This suggests the following rough strategy for classifying holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$

- Write down as many holomorphic maps $\mathcal{M} \rightarrow \mathcal{N}$ as you can.
- Classify the homomorphisms $\pi_1(\mathcal{M}) \rightarrow \pi_1(\mathcal{N})$.

Lin showed the following, which is in a regime where this strategy applies.

Theorem (Lin, '04): For $n \geq 5$, all non-constant holomorphic maps $\text{UConf}_n \mathbb{C} \rightarrow \text{UConf}_n \mathbb{C}$ are affine equivalent to the identity.

However in general there are non-trivial homomorphisms $\pi_1(\mathcal{M}) \rightarrow \pi_1(\mathcal{N})$ which are not induced by holomorphic maps.

Non-holomorphic homomorphisms

There is a natural inclusion homomorphism $B_n \hookrightarrow B_{n+1}$.

Non-holomorphic homomorphisms

There is a natural inclusion homomorphism $B_n \hookrightarrow B_{n+1}$.

It is induced by a continuous map $\mathrm{UConf}_n \mathbb{C} \rightarrow \mathrm{UConf}_{n+1} \mathbb{C}$ that “adds a point at ∞ ”.

Non-holomorphic homomorphisms

There is a natural inclusion homomorphism $B_n \hookrightarrow B_{n+1}$.

It is induced by a continuous map $\mathrm{UConf}_n \mathbb{C} \rightarrow \mathrm{UConf}_{n+1} \mathbb{C}$ that “adds a point at ∞ ”.

$$\{x_1, \dots, x_n\} \mapsto \{x_1, \dots, x_n, |x_1| + \dots + |x_n| + 1\}.$$

Non-holomorphic homomorphisms

There is a natural inclusion homomorphism $B_n \hookrightarrow B_{n+1}$.

It is induced by a continuous map $\text{UConf}_n \mathbb{C} \rightarrow \text{UConf}_{n+1} \mathbb{C}$ that “adds a point at ∞ ”.

$$\{x_1, \dots, x_n\} \mapsto \{x_1, \dots, x_n, |x_1| + \dots + |x_n| + 1\}.$$

It is not induced by a holomorphic map.

Non-holomorphic homomorphisms

There is a natural inclusion homomorphism $B_n \hookrightarrow B_{n+1}$.

It is induced by a continuous map $\mathrm{UConf}_n \mathbb{C} \rightarrow \mathrm{UConf}_{n+1} \mathbb{C}$ that “adds a point at ∞ ”.

$$\{x_1, \dots, x_n\} \mapsto \{x_1, \dots, x_n, |x_1| + \dots + |x_n| + 1\}.$$

It is not induced by a holomorphic map.

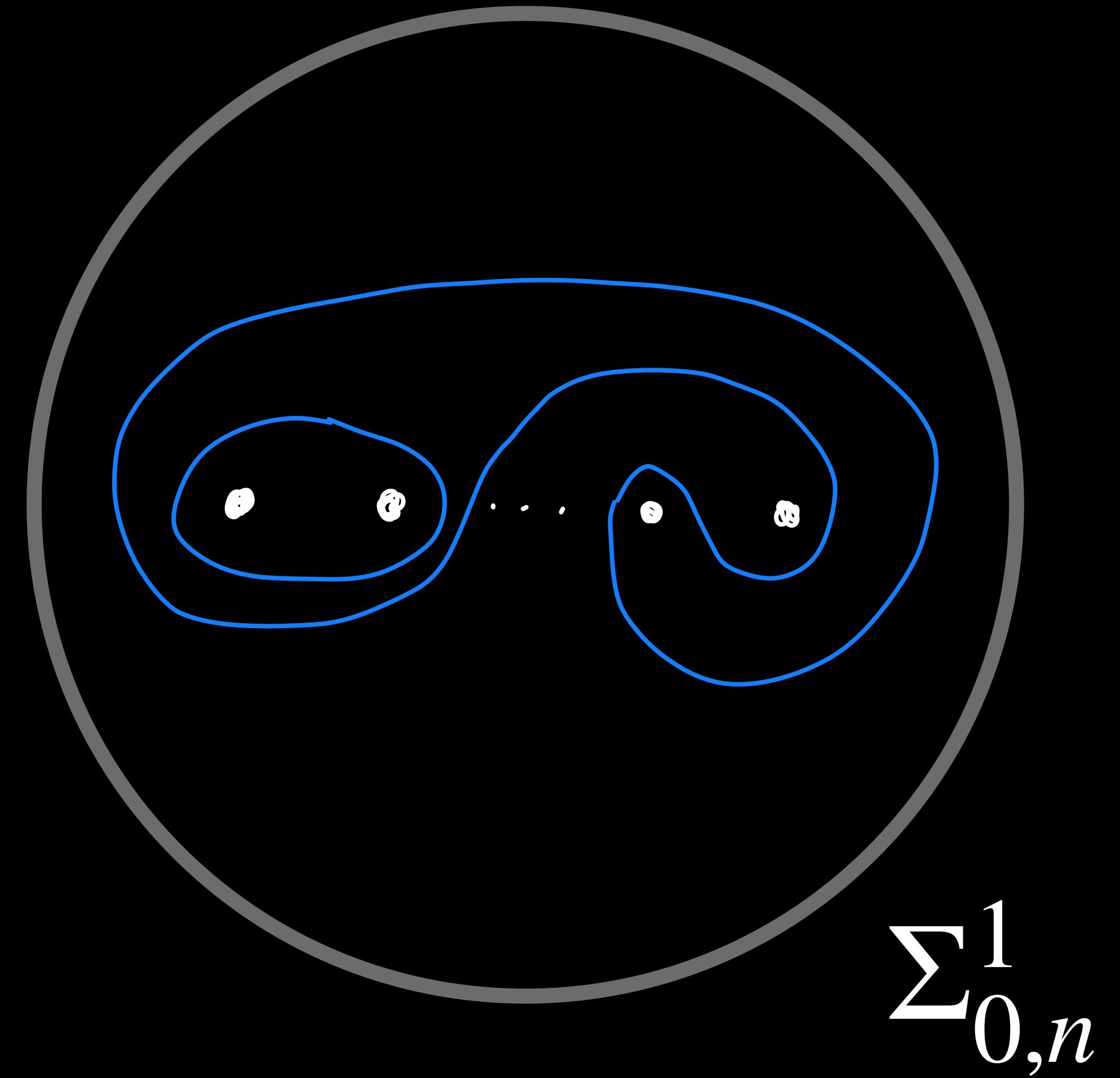
Why?

Mapping class group actions

$\text{Mod}(\Sigma)$ acts on the simple closed curves in a surface Σ , up to isotopy.

Mapping class group actions

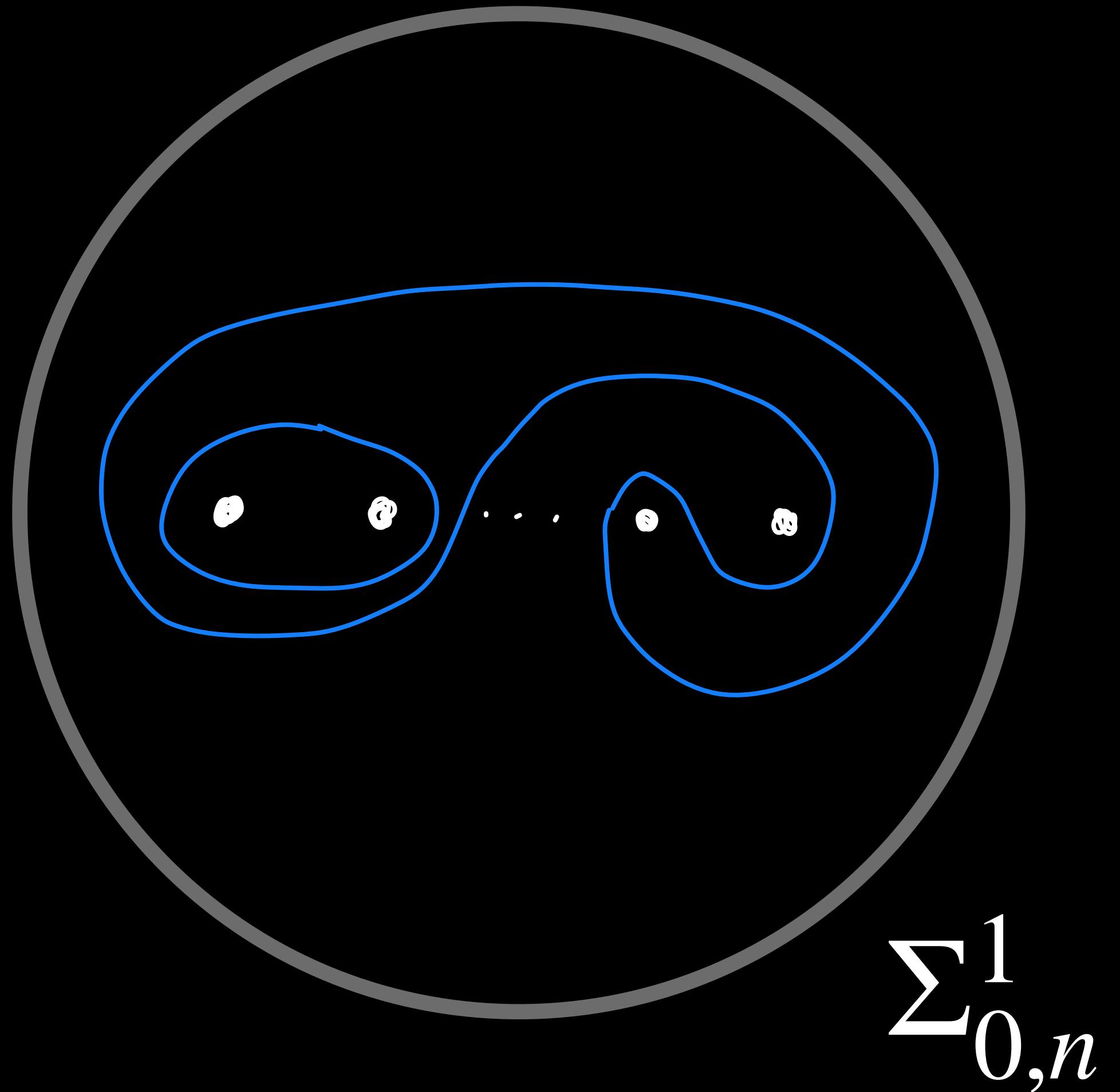
$\text{Mod}(\Sigma)$ acts on the simple closed curves in a surface Σ , up to isotopy.



Mapping class group actions

$\text{Mod}(\Sigma)$ acts on the simple closed curves in a surface Σ , up to isotopy.

A *multicurve* is a finite set of pairwise disjoint and non-isotopic simple closed curves in Σ .

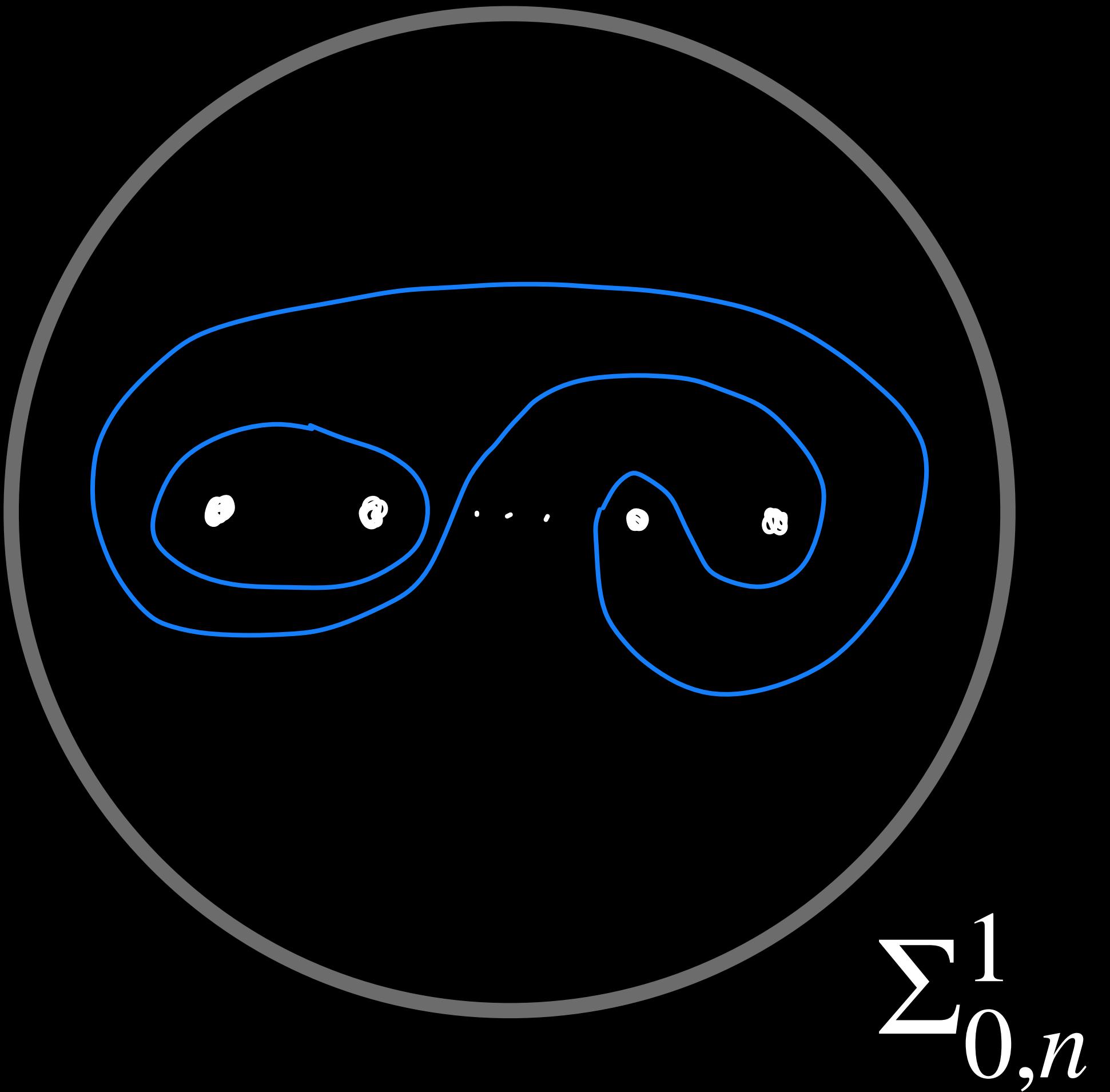


Mapping class group actions

$\text{Mod}(\Sigma)$ acts on the simple closed curves in a surface Σ , up to isotopy.

A *multicurve* is a finite set of pairwise disjoint and non-isotopic simple closed curves in Σ .

It is *essential* if none of these curves are isotopic to a boundary component or a puncture.



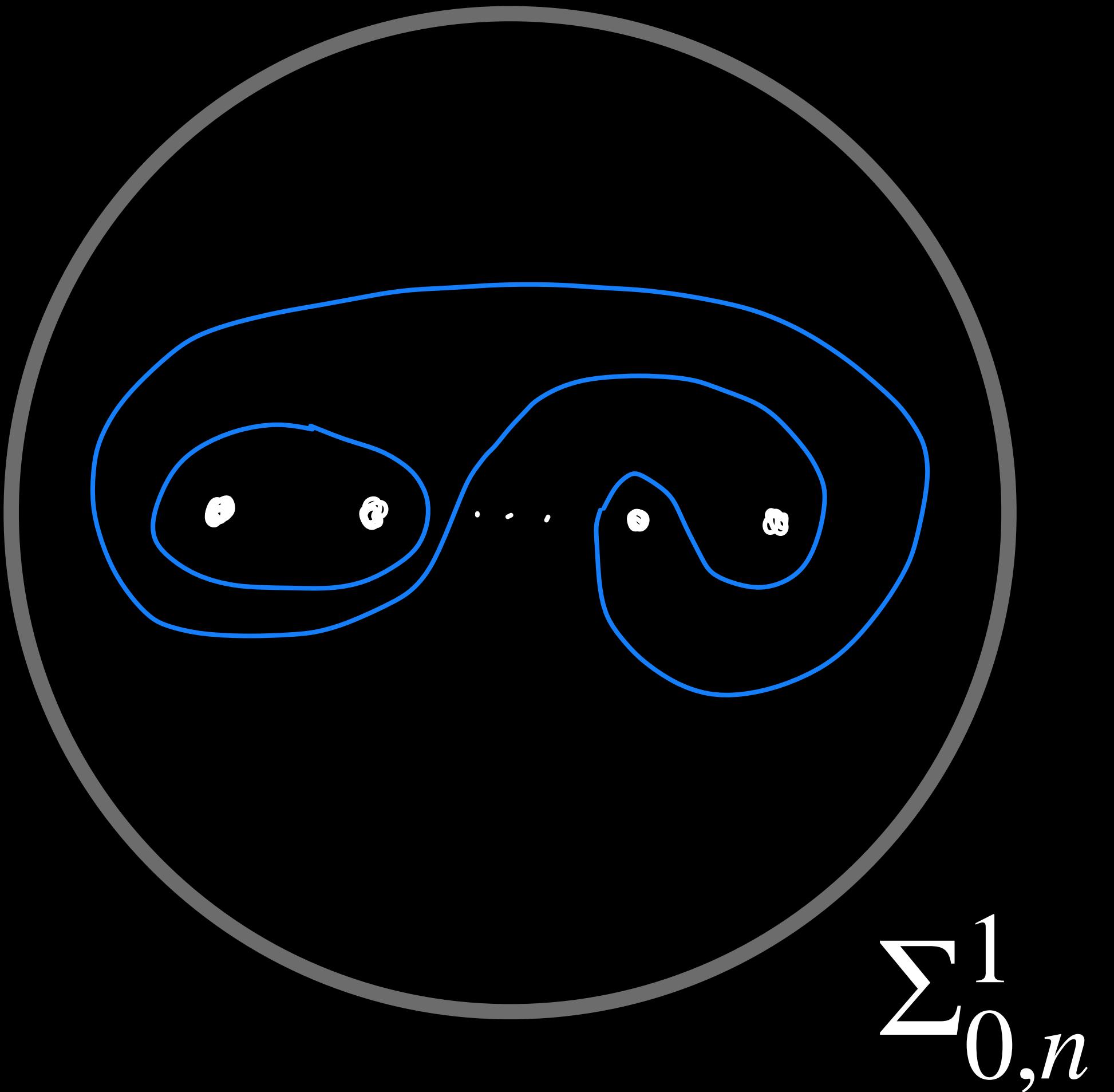
Mapping class group actions

$\text{Mod}(\Sigma)$ acts on the simple closed curves in a surface Σ , up to isotopy.

A *multicurve* is a finite set of pairwise disjoint and non-isotopic simple closed curves in Σ .

It is *essential* if none of these curves are isotopic to a boundary component or a puncture.

A homomorphism $\varphi: G \rightarrow \text{Mod}(\Sigma)$ is *reducible* if there is a multicurve in Σ preserved up to isotopy by $\varphi(G)$.



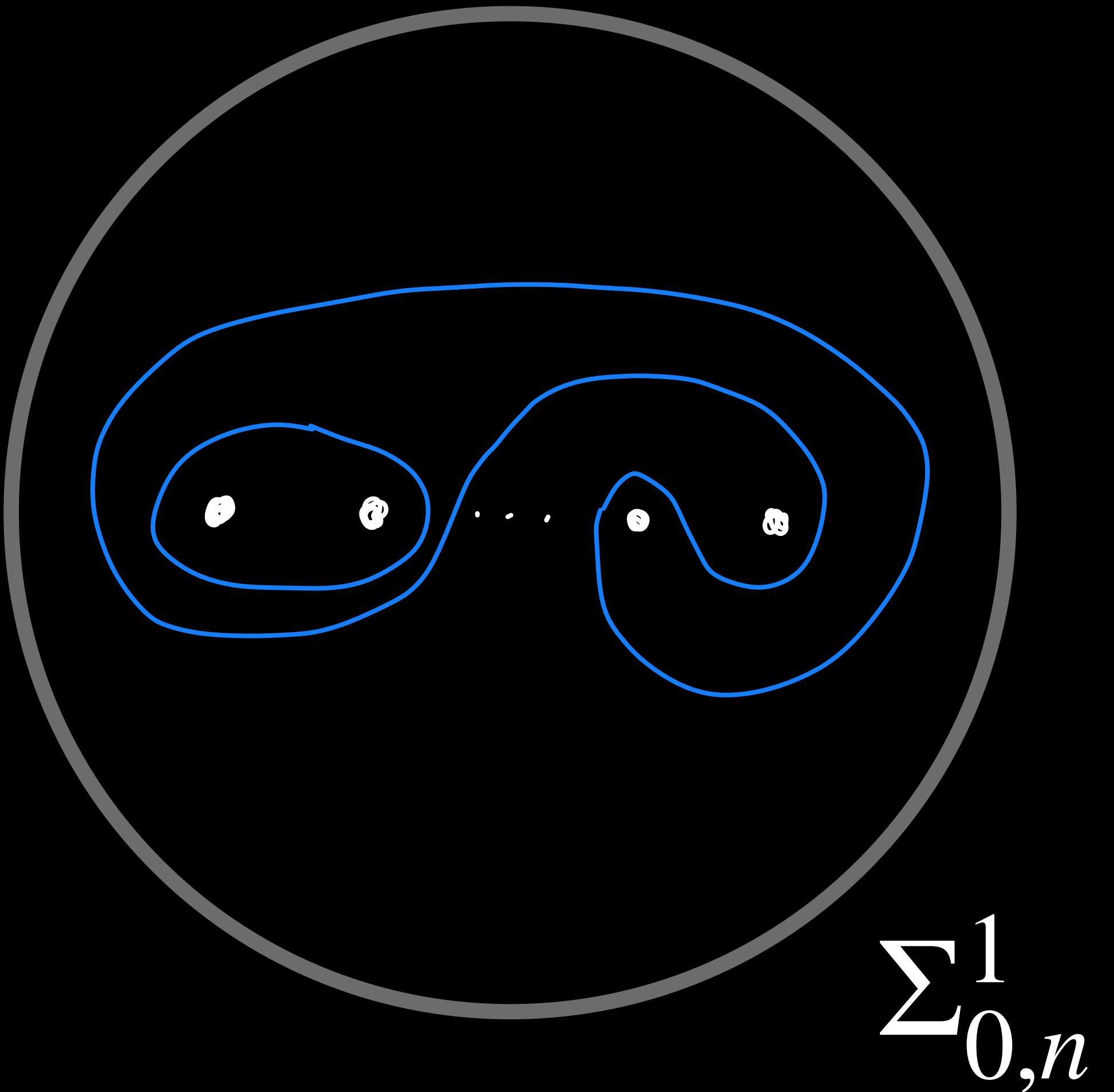
Mapping class group actions

$\text{Mod}(\Sigma)$ acts on the simple closed curves in a surface Σ , up to isotopy.

A *multicurve* is a finite set of pairwise disjoint and non-isotopic simple closed curves in Σ .

It is *essential* if none of these curves are isotopic to a boundary component or a puncture.

A homomorphism $\varphi: G \rightarrow \text{Mod}(\Sigma)$ is *reducible* if there is a multicurve in Σ preserved up to isotopy by $\varphi(G)$. If not reducible, then say *irreducible*.



Irreducibility is a requirement

Theorem (de Pool—Souto, ‘24): If M is an irreducible quasi-projective variety, and $F: M \rightarrow \mathcal{M}_{g,n}$ is a non-constant holomorphic map, then $F_*: \pi_1(M) \rightarrow \text{Mod}_{g,n}$ is irreducible.

Irreducibility is a requirement

Theorem (de Pool—Souto, ‘24): If M is an irreducible quasi-projective variety, and $F: M \rightarrow \mathcal{M}_{g,n}$ is a non-constant holomorphic map, then $F_*: \pi_1(M) \rightarrow \text{Mod}_{g,n}$ is irreducible.

Suffices to prove for Riemann surfaces M of finite type.

Irreducibility is a requirement

Theorem (de Pool—Souto, ‘24): If M is an irreducible quasi-projective variety, and $F: M \rightarrow \mathcal{M}_{g,n}$ is a non-constant holomorphic map, then $F_*: \pi_1(M) \rightarrow \text{Mod}_{g,n}$ is irreducible.

Suffices to prove for Riemann surfaces M of finite type.

(McMullen, ‘00) proved this for closed Riemann surfaces M .

Irreducibility is a requirement

Theorem (de Pool—Souto, ‘24): If M is an irreducible quasi-projective variety, and $F: M \rightarrow \mathcal{M}_{g,n}$ is a non-constant holomorphic map, then $F_*: \pi_1(M) \rightarrow \text{Mod}_{g,n}$ is irreducible.

Suffices to prove for Riemann surfaces M of finite type.

(McMullen, ‘00) proved this for closed Riemann surfaces M .

Corollary: A holomorphic map $f: \text{UConf}_n \mathbb{C} \rightarrow \text{UConf}_m \mathbb{C}$ must induce an irreducible homomorphism $f_*: B_n \rightarrow B_m$.

Other results

Theorem (Chen—Kordek—Margalit, ‘23): If $n \geq 5$, and $m \leq 2n$, and $\varphi: B_n \rightarrow B_m$ is irreducible and non-cyclic, then $m = n$ and φ is center equivalent to the identity.

Other results

Theorem (Chen—Kordek—Margalit, ‘23): If $n \geq 5$, and $m \leq 2n$, and $\varphi: B_n \rightarrow B_m$ is irreducible and non-cyclic, then $m = n$ and φ is center equivalent to the identity.

They conjecture the $m \leq 2n$ bound is not necessary.

Other results

Theorem (Chen—Kordek—Margalit, ‘23): If $n \geq 5$, and $m \leq 2n$, and $\varphi: B_n \rightarrow B_m$ is irreducible and non-cyclic, then $m = n$ and φ is center equivalent to the identity.

They conjecture the $m \leq 2n$ bound is not necessary.

Theorem (Chen—Salter, ‘23): If $n \geq 5$, and $m \leq 2n$, then every holomorphic map $\text{UConf}_n \mathbb{C} \rightarrow \text{UConf}_m \mathbb{C}$ is affine equivalent to the identity or a constant map.

What about $n = 3$ or 4 ?

$$B_3 = \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$$

What about $n = 3$ or 4 ?

$$B_3 = \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle = \langle \alpha, \beta \mid \alpha^3 = \beta^2 \rangle,$$

where $\alpha = \sigma_1 \sigma_2$ and $\beta = \sigma_1 \sigma_2 \sigma_1$.

What about $n = 3$ or 4 ?

$$B_3 = \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle = \langle \alpha, \beta \mid \alpha^3 = \beta^2 \rangle,$$

where $\alpha = \sigma_1 \sigma_2$ and $\beta = \sigma_1 \sigma_2 \sigma_1$.

We obtain a wealth of endomorphisms of B_3 via maps of the form ($g, h \in B_3$):

$$\alpha \mapsto gag^{-1}, \beta \mapsto h\beta h^{-1}.$$

What about $n = 3$ or 4 ?

$$B_3 = \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle = \langle \alpha, \beta \mid \alpha^3 = \beta^2 \rangle,$$

where $\alpha = \sigma_1 \sigma_2$ and $\beta = \sigma_1 \sigma_2 \sigma_1$.

We obtain a wealth of endomorphisms of B_3 via maps of the form ($g, h \in B_3$):

$$\alpha \mapsto gag^{-1}, \beta \mapsto h\beta h^{-1}.$$

Theorem (H—Schillewaert, '23): These provide infinitely many center-inequivalent irreducible homomorphisms $B_3 \rightarrow B_3$.

What about $n = 3$ or 4 ?

$$B_3 = \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle = \langle \alpha, \beta \mid \alpha^3 = \beta^2 \rangle,$$

where $\alpha = \sigma_1 \sigma_2$ and $\beta = \sigma_1 \sigma_2 \sigma_1$.

We obtain a wealth of endomorphisms of B_3 via maps of the form ($g, h \in B_3$):

$$\alpha \mapsto gag^{-1}, \beta \mapsto h\beta h^{-1}.$$

Theorem (H—Schillewaert, ‘23): These provide infinitely many center-inequivalent irreducible homomorphisms $B_3 \rightarrow B_3$.

We can precompose each of these with Ferrari’s map $R_*: B_4 \rightarrow B_3$ to obtain a wealth of irreducible homomorphisms $B_4 \rightarrow B_3$.

Dehn twists

Let γ be a curve in an orientable surface Σ . The *Dehn twist* $T_\gamma \in \text{Mod}(\Sigma)$ about γ is defined as follows.

Dehn twists

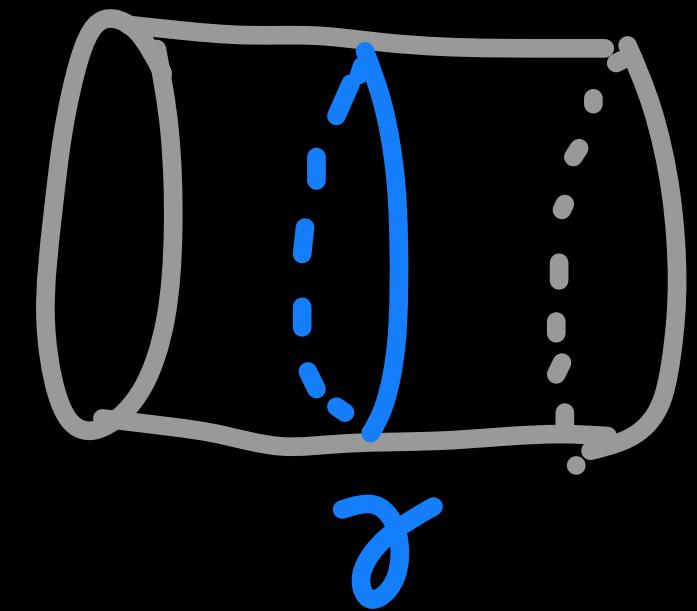
Let γ be a curve in an orientable surface Σ . The *Dehn twist* $T_\gamma \in \text{Mod}(\Sigma)$ about γ is defined as follows.

Take an annular neighborhood of γ , viewed as the cylinder $S^1 \times [0,1]$.

Dehn twists

Let γ be a curve in an orientable surface Σ . The *Dehn twist* $T_\gamma \in \text{Mod}(\Sigma)$ about γ is defined as follows.

Take an annular neighborhood of γ , viewed as the cylinder $S^1 \times [0,1]$.

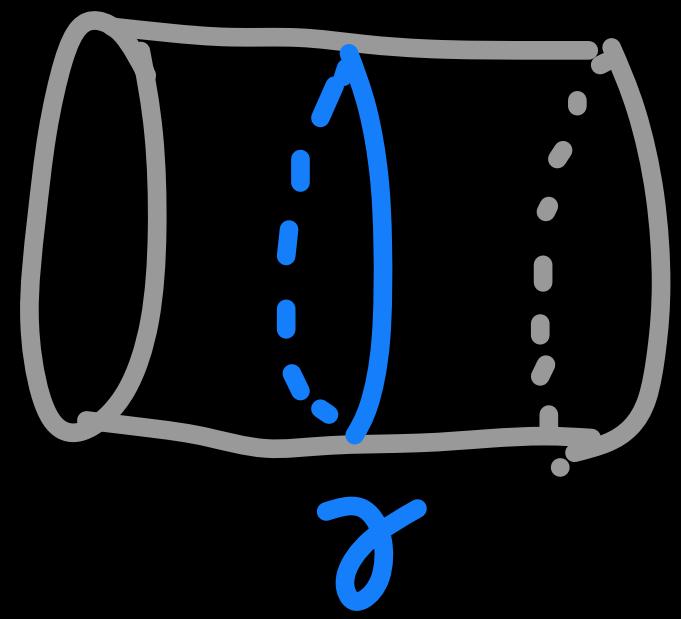


Dehn twists

Let γ be a curve in an orientable surface Σ . The *Dehn twist* $T_\gamma \in \text{Mod}(\Sigma)$ about γ is defined as follows.

Take an annular neighborhood of γ , viewed as the cylinder $S^1 \times [0,1]$.

Then T_γ acts by $(e^{i\theta}, t) \mapsto (e^{i(\theta+2\pi t)}, t)$ on the annulus, and the identity elsewhere.

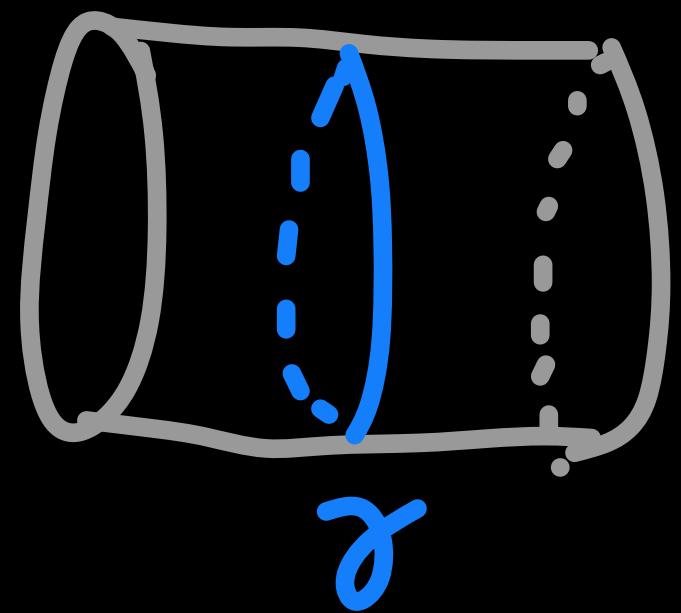
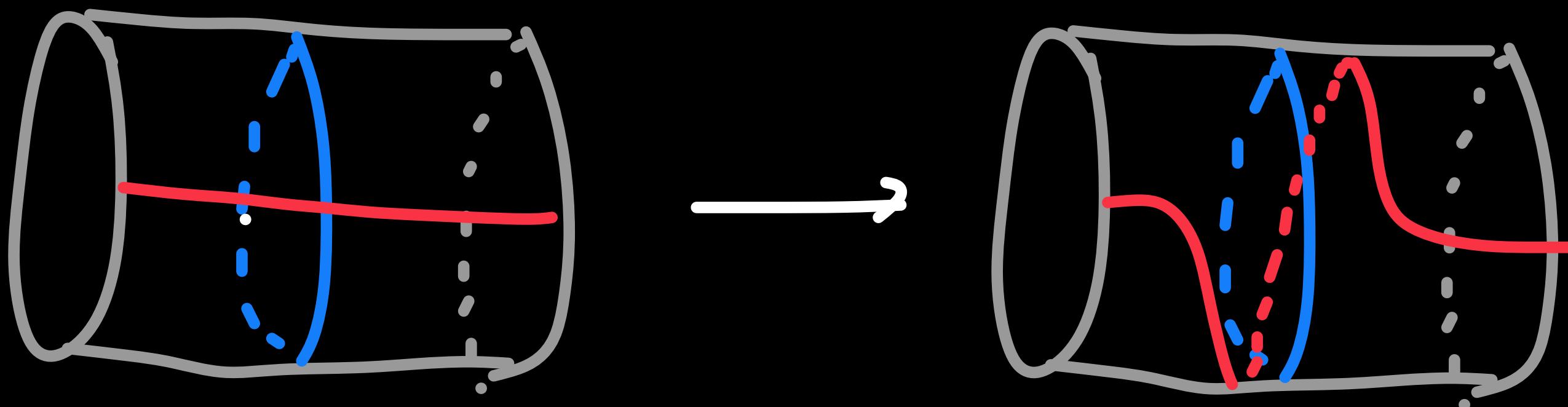


Dehn twists

Let γ be a curve in an orientable surface Σ . The *Dehn twist* $T_\gamma \in \text{Mod}(\Sigma)$ about γ is defined as follows.

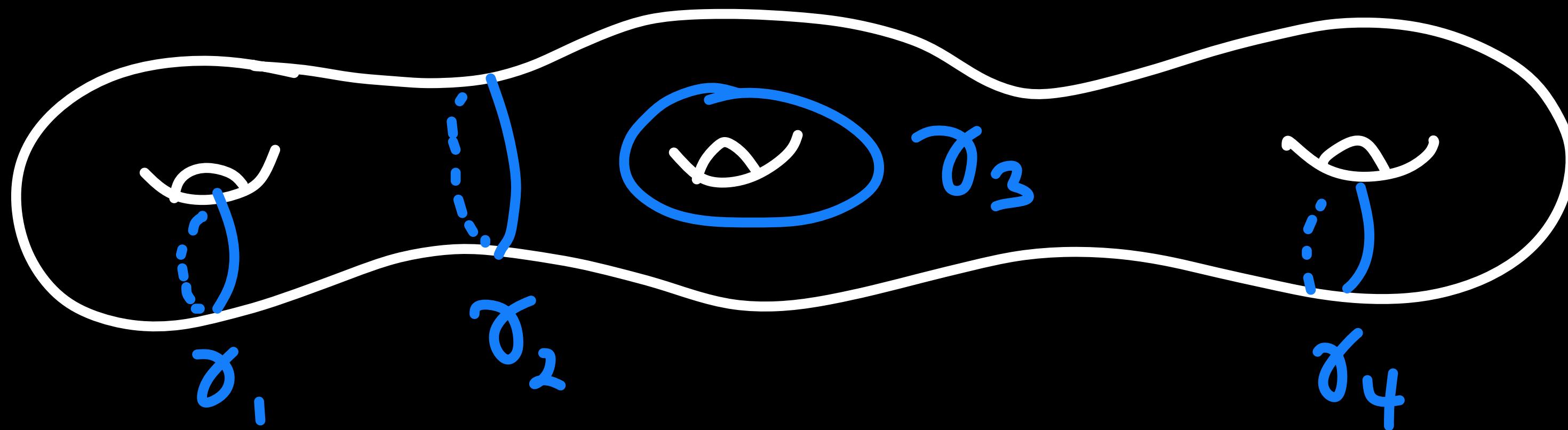
Take an annular neighborhood of γ , viewed as the cylinder $S^1 \times [0,1]$.

Then T_γ acts by $(e^{i\theta}, t) \mapsto (e^{i(\theta+2\pi t)}, t)$ on the annulus, and the identity elsewhere.



Multitwists

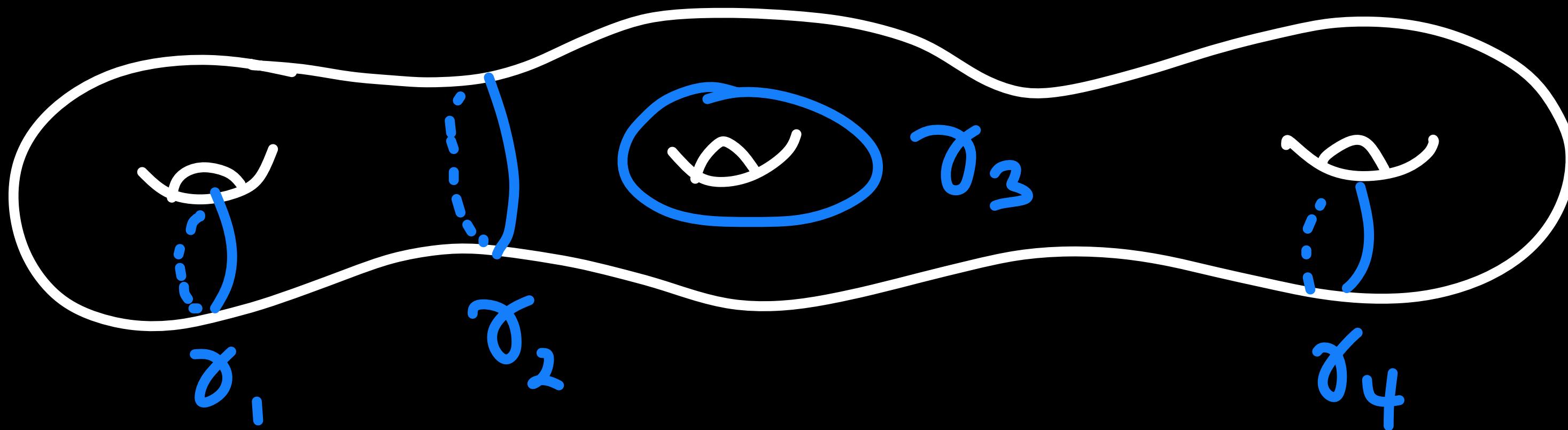
If we let $\gamma_1, \dots, \gamma_n$ be the curves in a multicurve on an orientable surface Σ , then the Dehn twists $T_{\gamma_1}, \dots, T_{\gamma_n}$ all commute in $\text{Mod}(\Sigma)$.



Multitwists

If we let $\gamma_1, \dots, \gamma_n$ be the curves in a multicurve on an orientable surface Σ , then the Dehn twists $T_{\gamma_1}, \dots, T_{\gamma_n}$ all commute in $\text{Mod}(\Sigma)$.

We call an element of the subgroup $\langle T_{\gamma_1}, \dots, T_{\gamma_n} \rangle \cong \mathbb{Z}^n$ a *multitwist*.



Teichmüller metric

There is a metric d_{Teich} on $\mathcal{T}_{g,n}$ called the *Teichmüller metric*, preserved by $\text{Mod}_{g,n}$.

Teichmüller metric

There is a metric d_{Teich} on $\mathcal{T}_{g,n}$ called the *Teichmüller metric*, preserved by $\text{Mod}_{g,n}$.

Theorem (Royden ‘71, Earle—Kra, ‘74) If $2g + n \geq 3$, and B is a Riemann surface with universal cover $\tilde{B} \cong \mathbb{H}$, then every holomorphic map $B \rightarrow \mathcal{M}_{g,n}$ is distance non-increasing with respect to d_{Hyp} and d_{Teich} .

Teichmüller metric

There is a metric d_{Teich} on $\mathcal{T}_{g,n}$ called the *Teichmüller metric*, preserved by $\text{Mod}_{g,n}$.

Theorem (Royden ‘71, Earle—Kra, ‘74) If $2g + n \geq 3$, and B is a Riemann surface with universal cover $\tilde{B} \cong \mathbb{H}$, then every holomorphic map $B \rightarrow \mathcal{M}_{g,n}$ is distance non-increasing with respect to d_{Hyp} and d_{Teich} .

For $f \in \text{Mod}_{g,n}$ we may define the *translation length* to be

$$\tau(f) := \inf_{x \in \mathcal{T}_{g,n}} d_{\text{Teich}}(x, f(x)).$$

Teichmüller metric

There is a metric d_{Teich} on $\mathcal{T}_{g,n}$ called the *Teichmüller metric*, preserved by $\text{Mod}_{g,n}$.

Theorem (Royden ‘71, Earle—Kra, ‘74) If $2g + n \geq 3$, and B is a Riemann surface with universal cover $\tilde{B} \cong \mathbb{H}$, then every holomorphic map $B \rightarrow \mathcal{M}_{g,n}$ is distance non-increasing with respect to d_{Hyp} and d_{Teich} .

For $f \in \text{Mod}_{g,n}$ we may define the *translation length* to be

$$\tau(f) := \inf_{x \in \mathcal{T}_{g,n}} d_{\text{Teich}}(x, f(x)).$$

Theorem (Bers, ‘78) $\tau(f) = 0$ if and only if f^k is a multitwist for some $k \geq 1$.

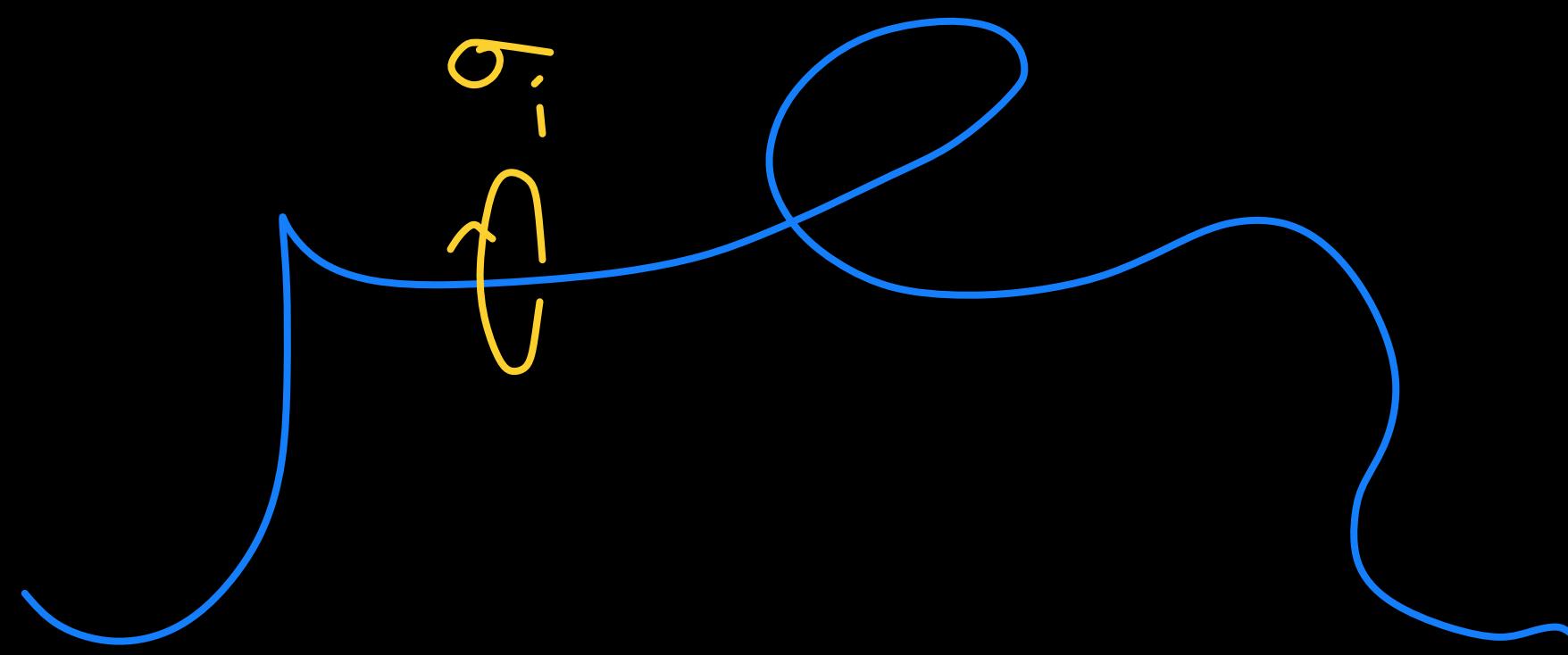
Image of standard braid generators

Proposition: If $f: \text{UConf}_n \mathbb{C} \rightarrow \text{UConf}_m \mathbb{C}$ is holomorphic, and $f_*: B_n \rightarrow B_m$ is the induced homomorphism, then $f_*(\sigma_i)$ is a root of a multitwist in B_m , for all $1 \leq i < n$.

Image of standard braid generators

Proposition: If $f: \text{UConf}_n \mathbb{C} \rightarrow \text{UConf}_m \mathbb{C}$ is holomorphic, and $f_*: B_n \rightarrow B_m$ is the induced homomorphism, then $f_*(\sigma_i)$ is a root of a multitwist in B_m , for all $1 \leq i < n$.

Proof sketch:



$\mathbb{C}^n - \{\text{discr. locus}\}$

hol.

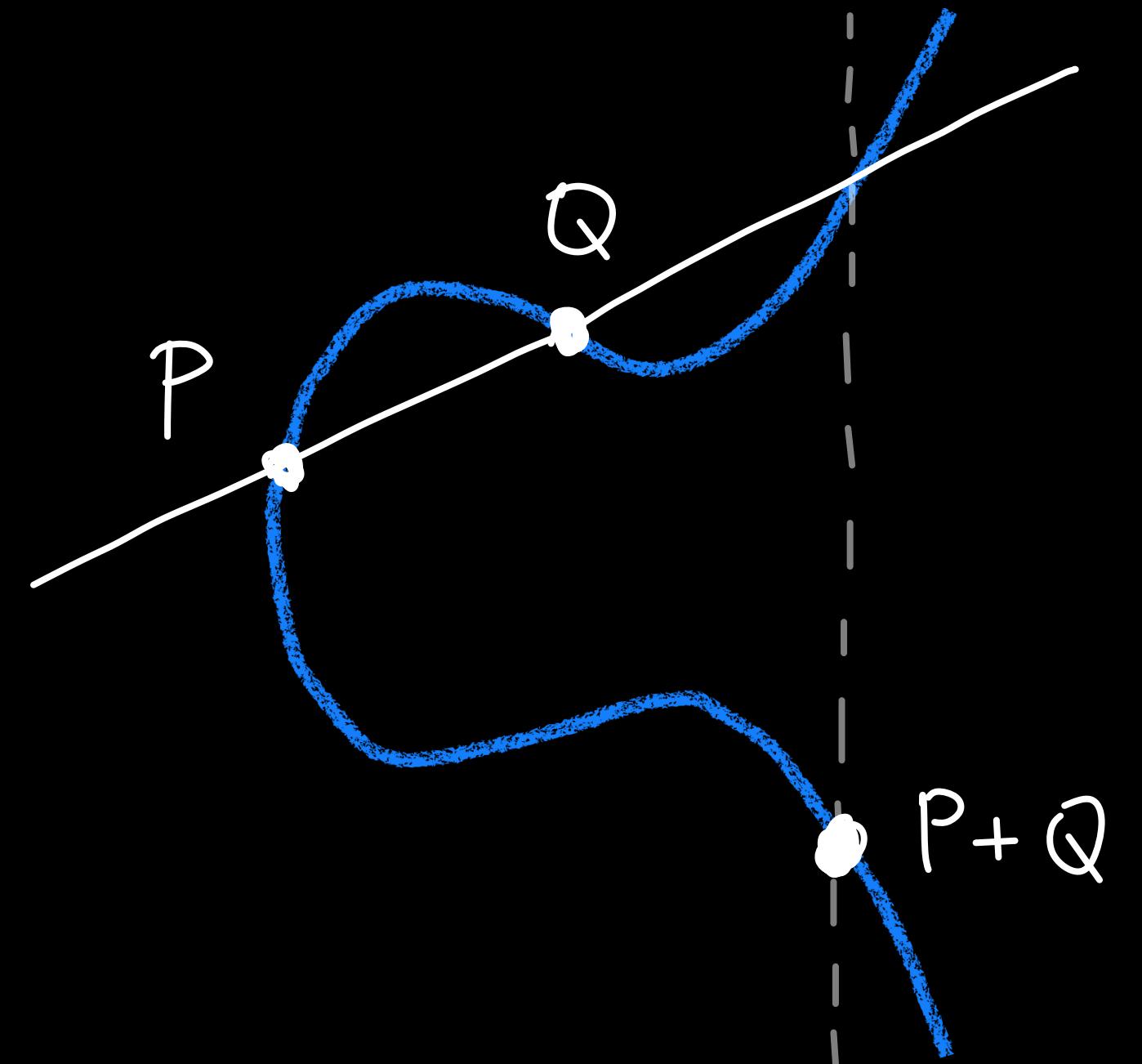
length decreasing
w.r.t. Teich.
metric

$M_{0, m+1} / S_m$

Elliptic curve constructions

Given $\{x_1, x_2, x_3\} \in \text{UConf}_3\mathbb{C}$, can construct an *elliptic curve*

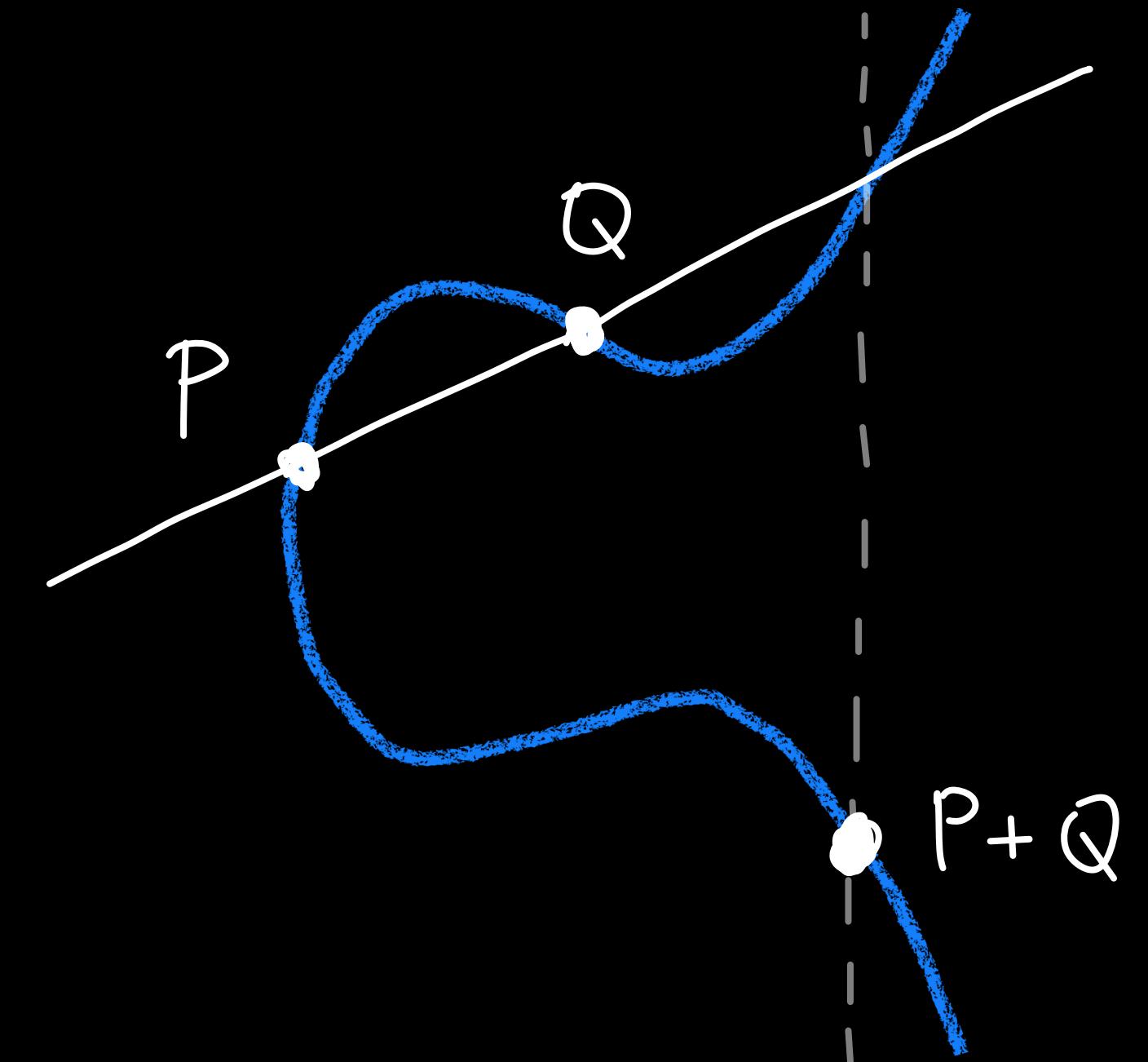
$$y^2 = (x - x_1)(x - x_2)(x - x_3).$$



Elliptic curve constructions

Given $\{x_1, x_2, x_3\} \in \text{UConf}_3\mathbb{C}$, can construct an *elliptic curve*

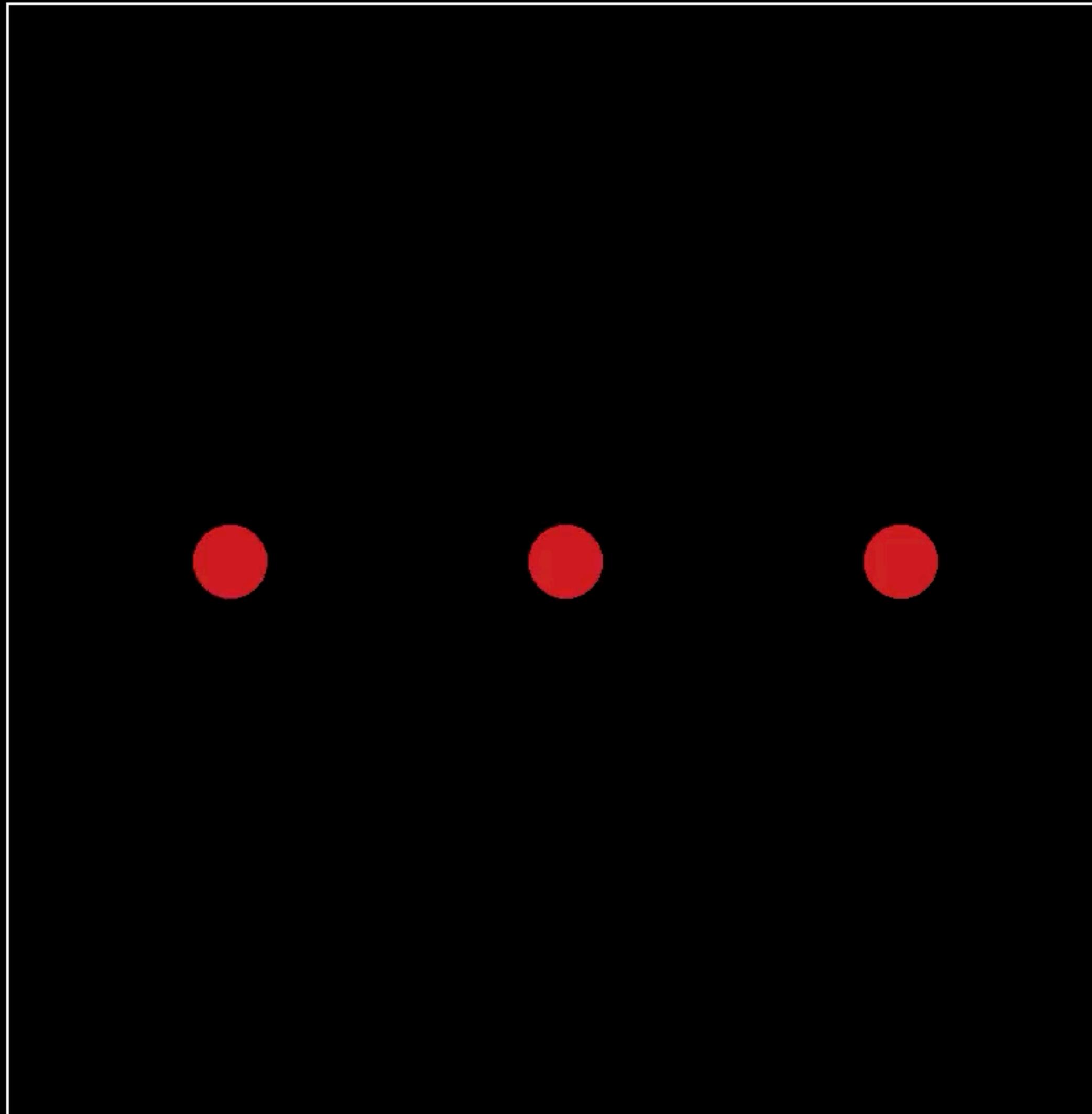
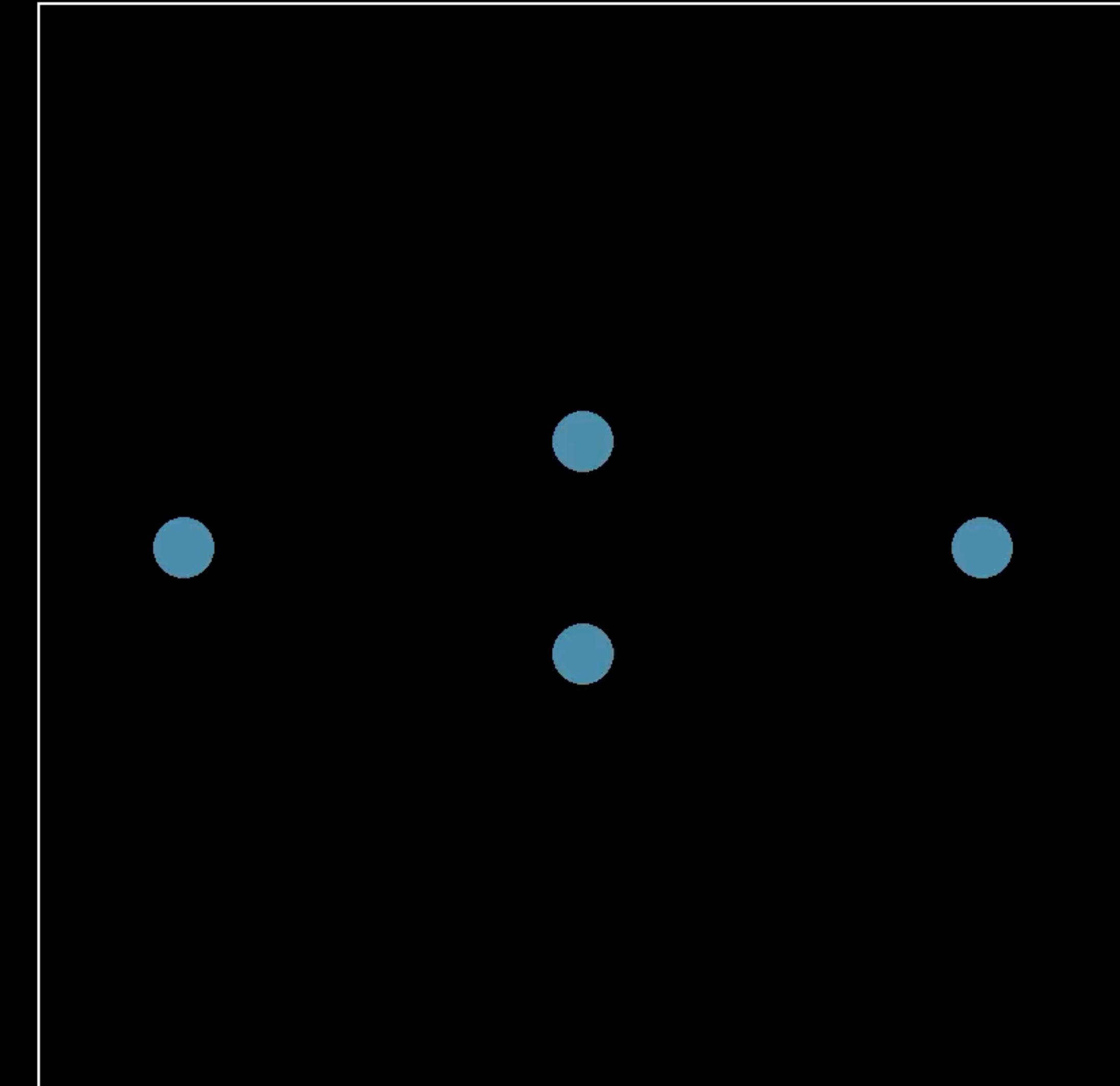
$$y^2 = (x - x_1)(x - x_2)(x - x_3).$$



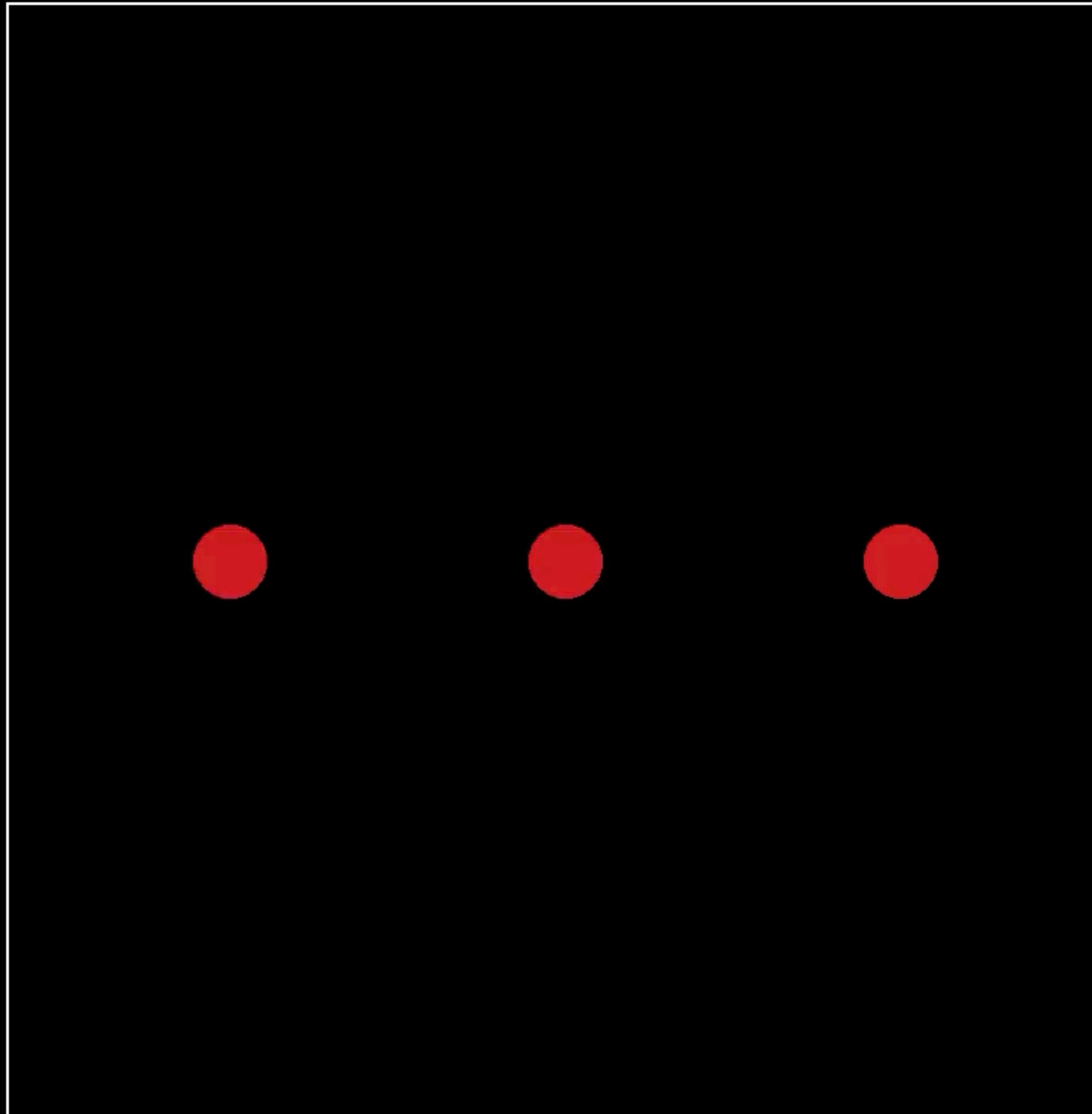
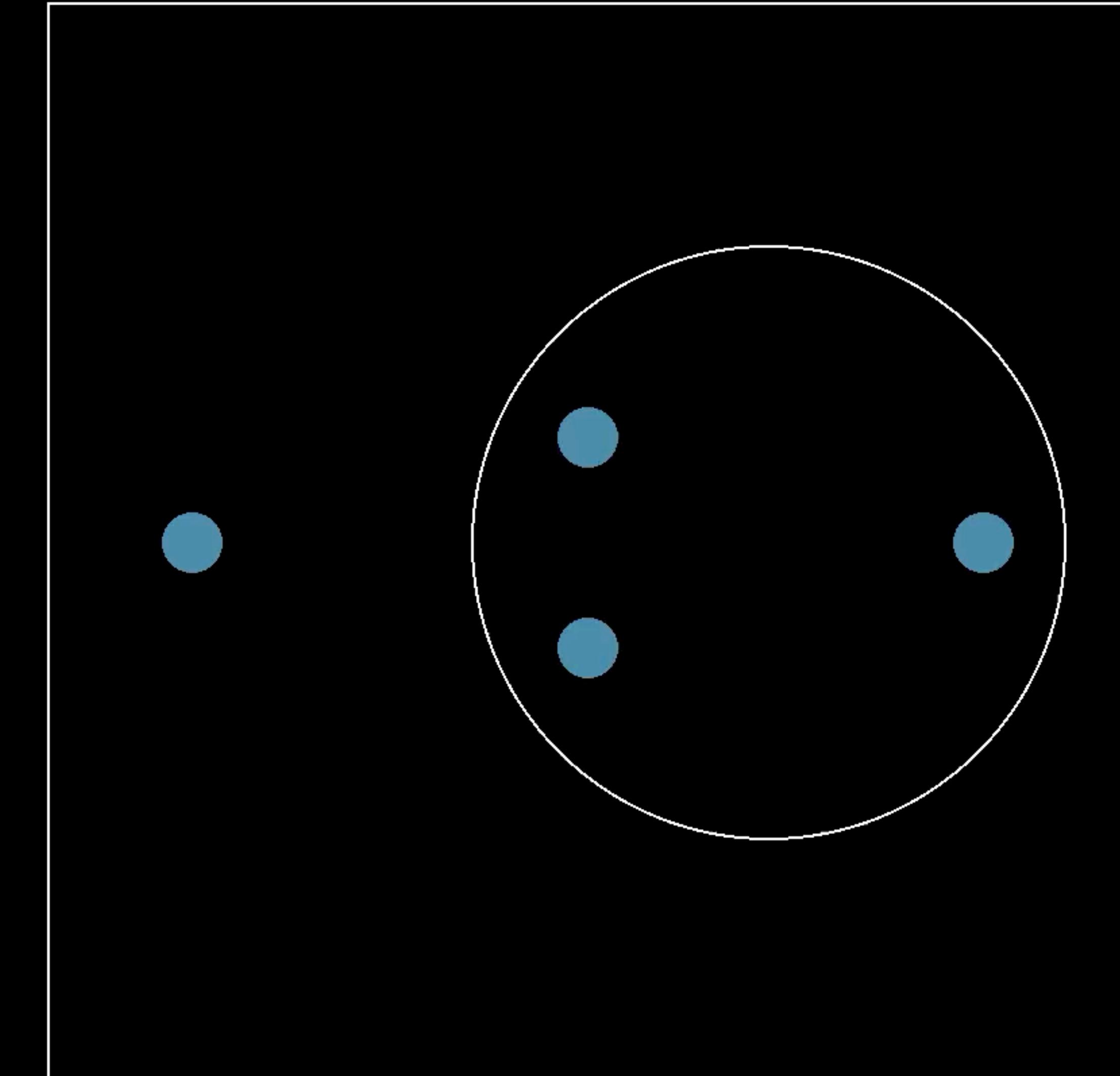
Get a holomorphic map $\Psi_k: \text{UConf}_3\mathbb{C} \rightarrow \text{UConf}_{m_k}\mathbb{C}$ by

$$\Psi_k(\{x_1, x_2, x_3\}) = \{x\text{-coordinates of points of order } k\}$$

Example: $\Psi_3: \text{UConf}_3\mathbb{C} \rightarrow \text{UConf}_4\mathbb{C}$



Example: $\Psi_3: \text{UConf}_3\mathbb{C} \rightarrow \text{UConf}_4\mathbb{C}$

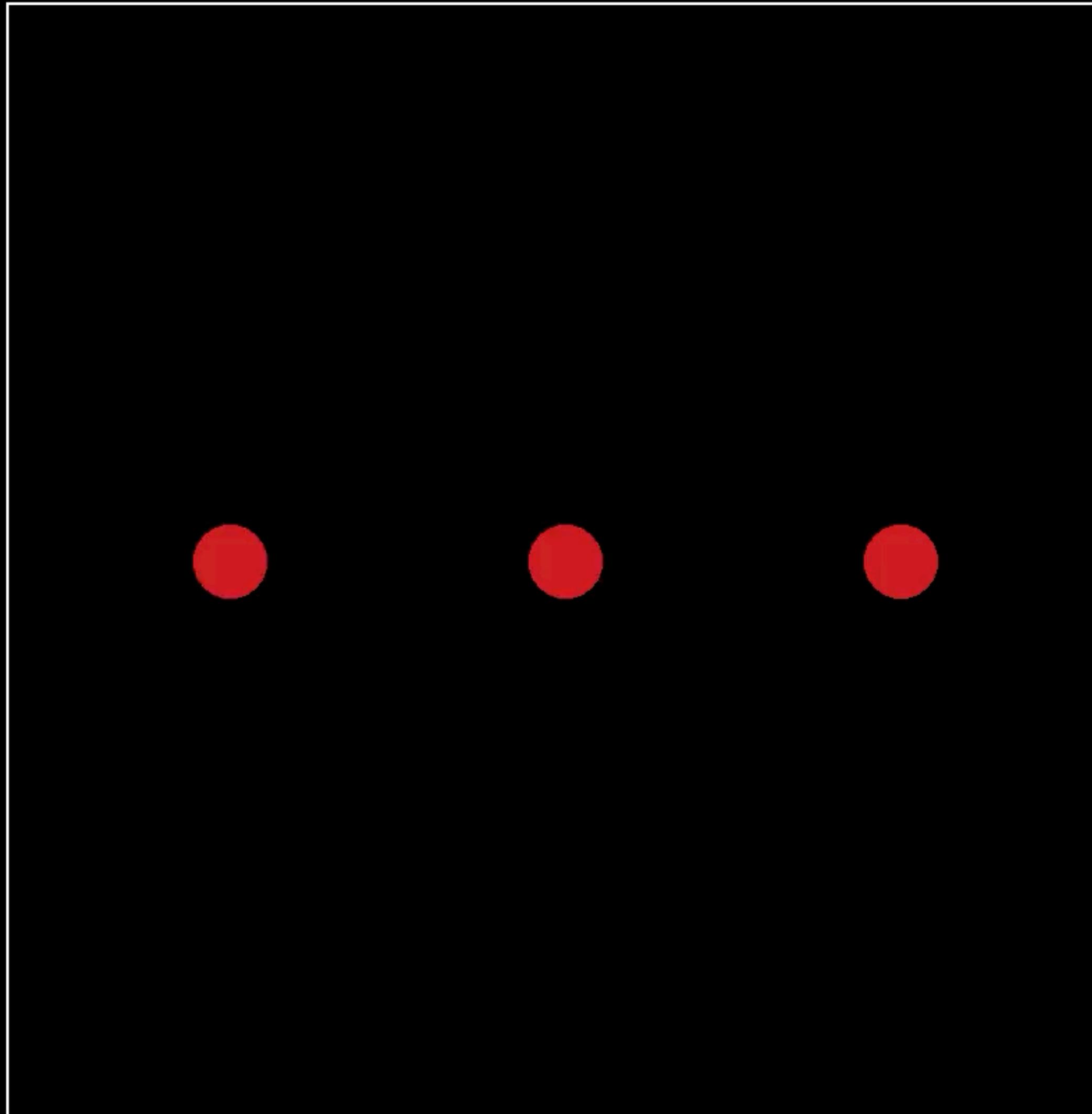
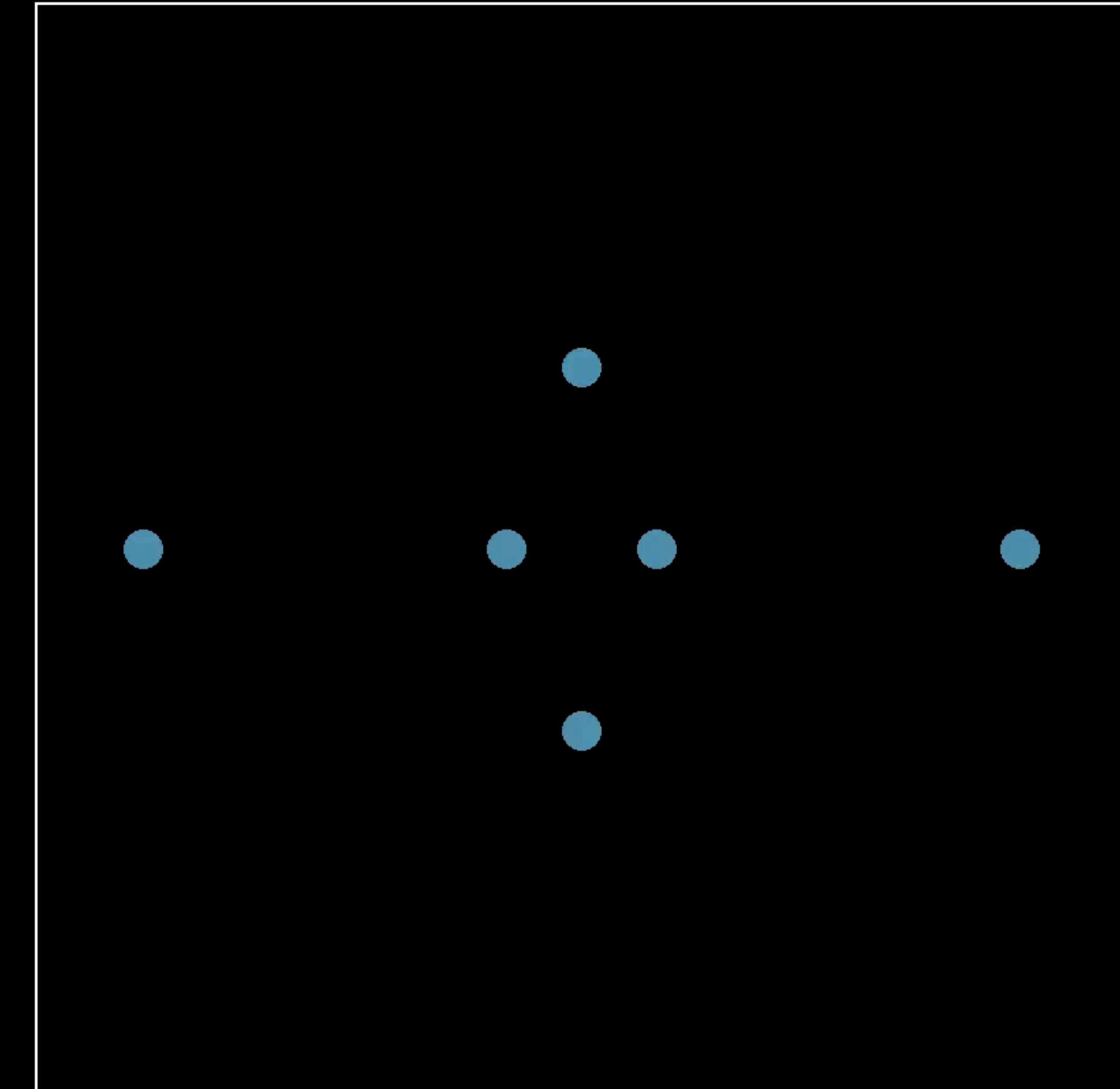


Theorem: (H—Schillewaert, '23)

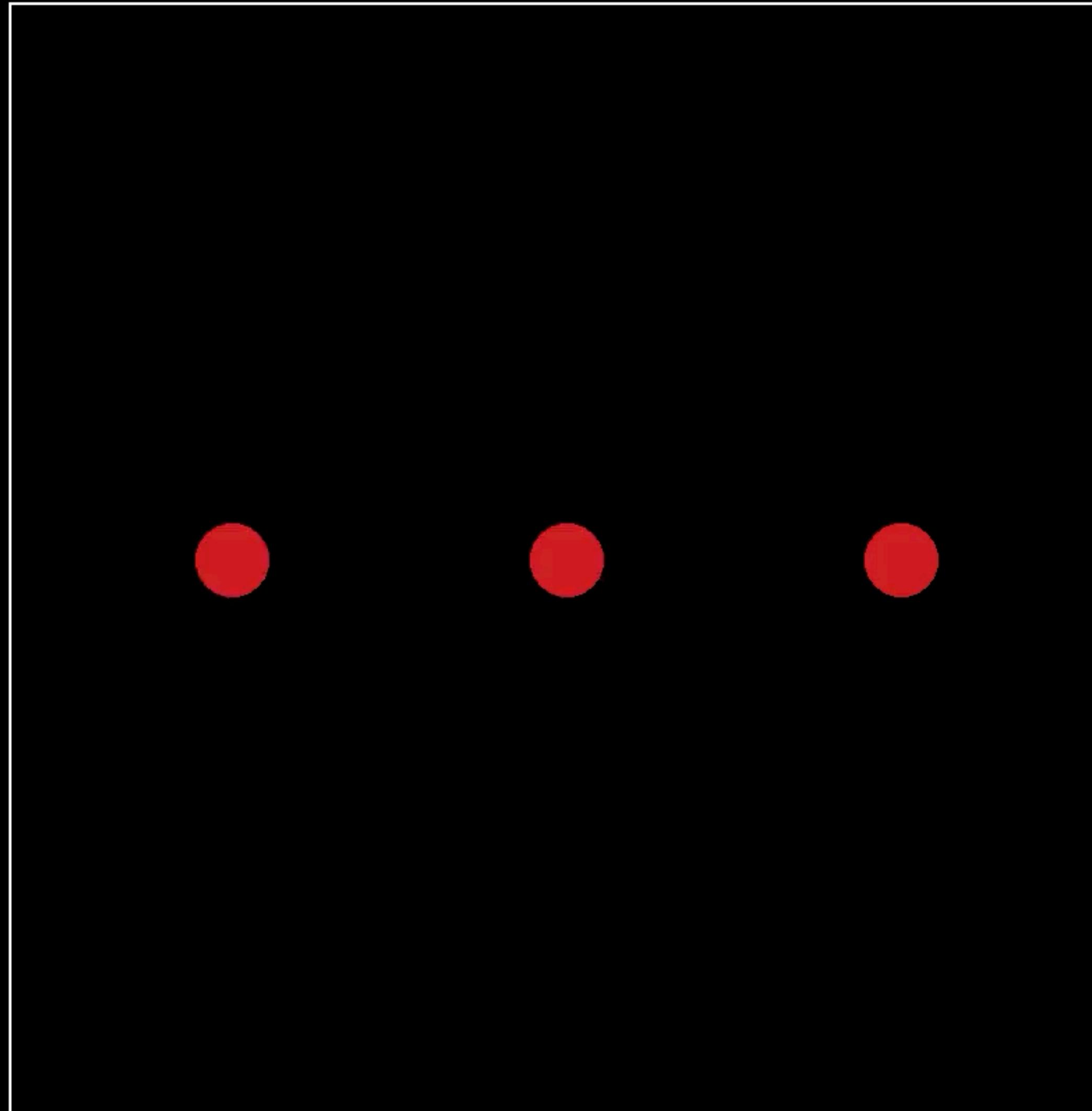
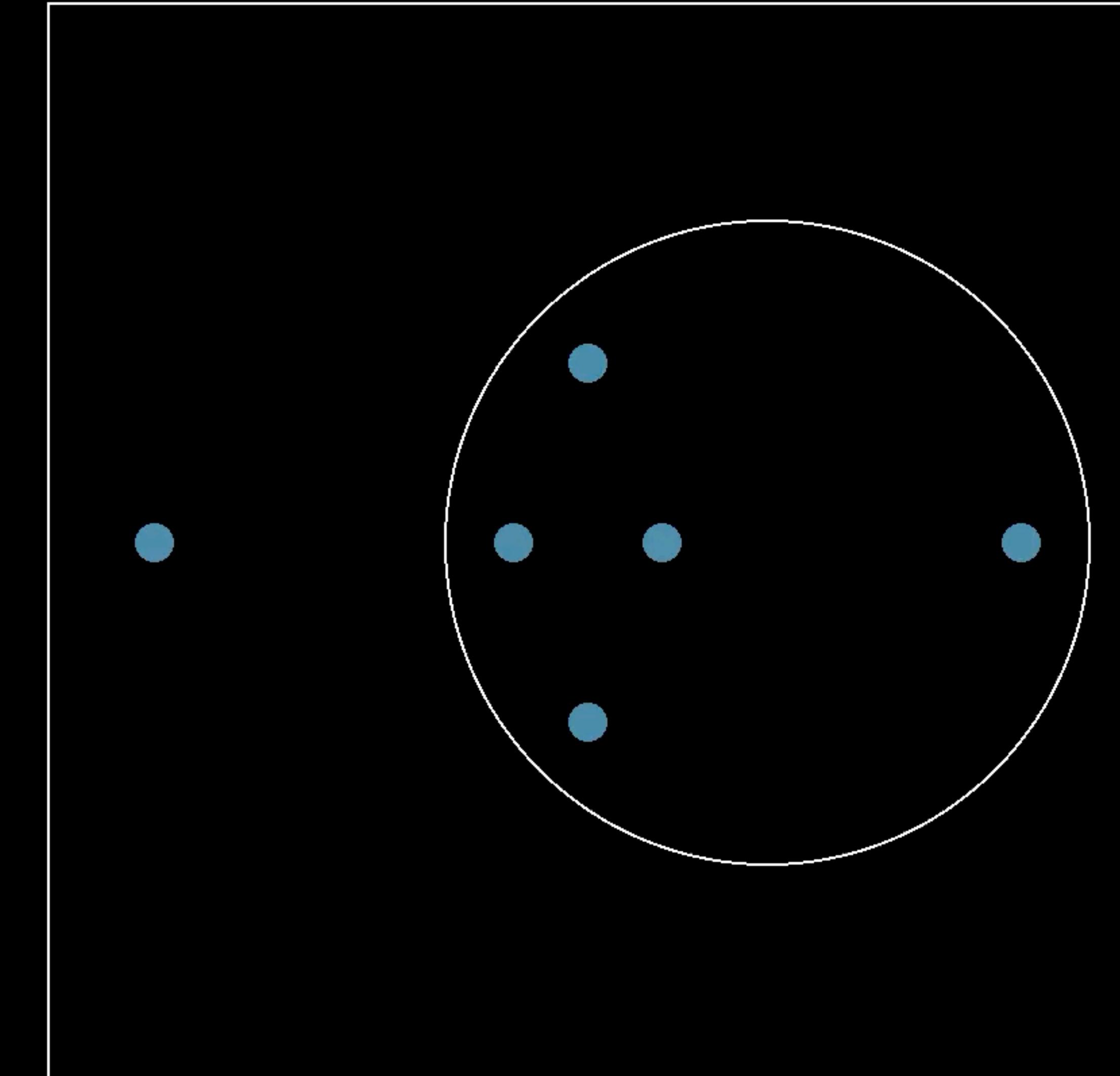
If $f: \text{UConf}_n \mathbb{C} \rightarrow \text{UConf}_m \mathbb{C}$ is holomorphic, $n \geq 3$, and $m \leq \max\{n, 4\}$, then it is equivalent to one of the following

- a constant map,
- the identity map,
- $R: \text{UConf}_4 \mathbb{C} \rightarrow \text{UConf}_3 \mathbb{C}$
- $\Psi_3: \text{UConf}_3 \mathbb{C} \rightarrow \text{UConf}_4 \mathbb{C}$
- $\Psi_3 \circ R: \text{UConf}_4 \mathbb{C} \rightarrow \text{UConf}_4 \mathbb{C}$

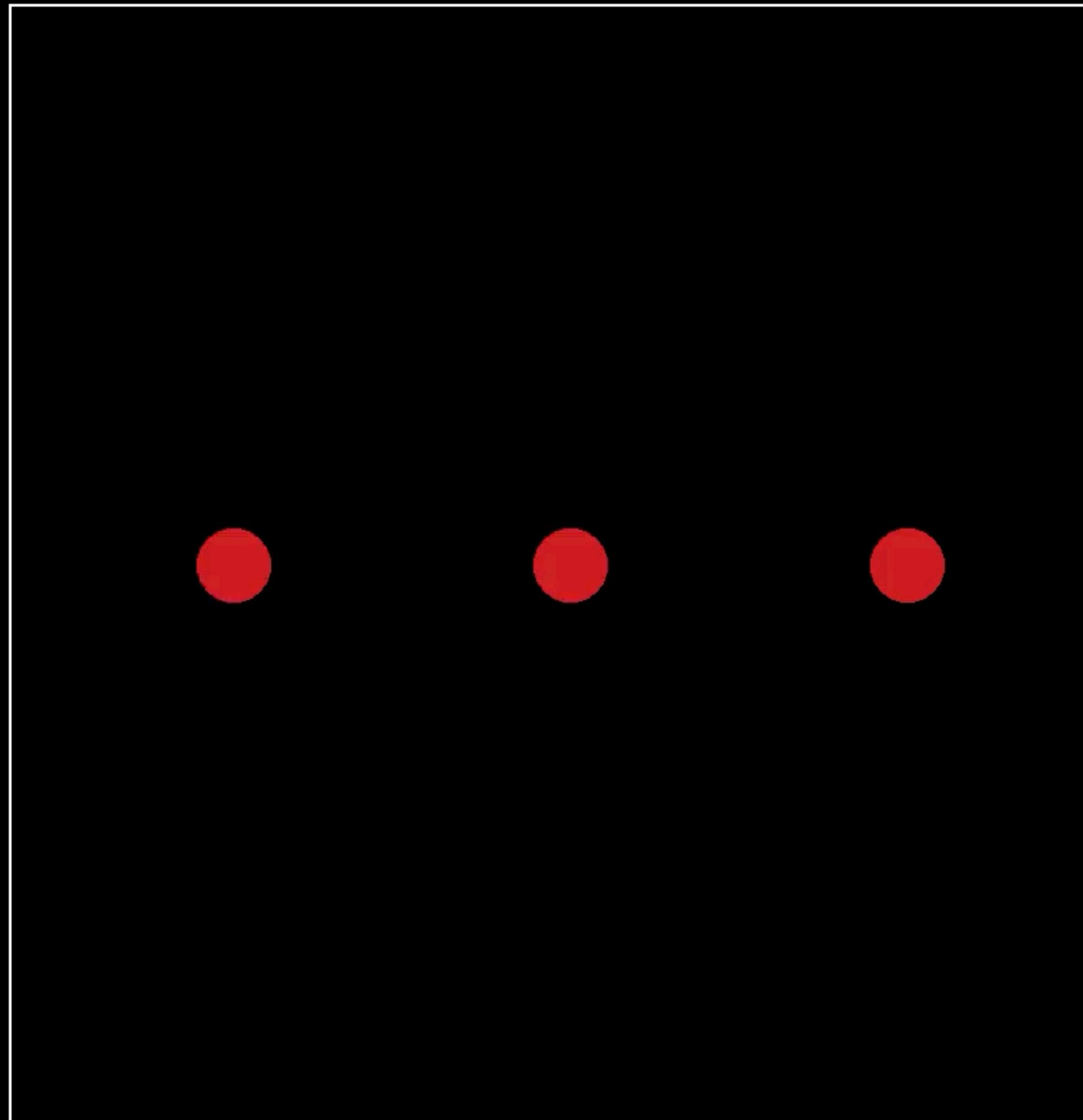
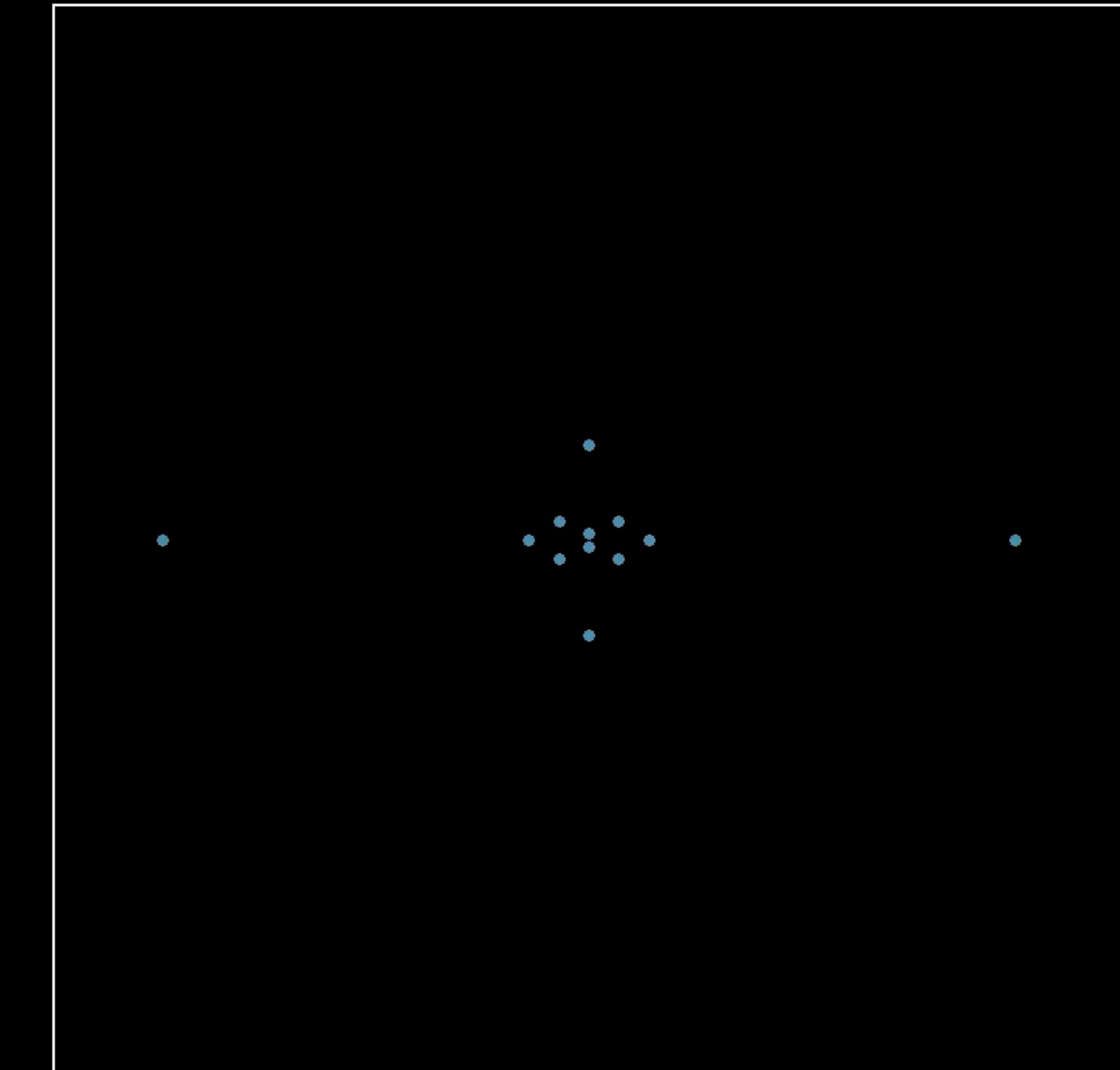
Example: $\Psi_4: \text{UConf}_3\mathbb{C} \rightarrow \text{UConf}_6\mathbb{C}$



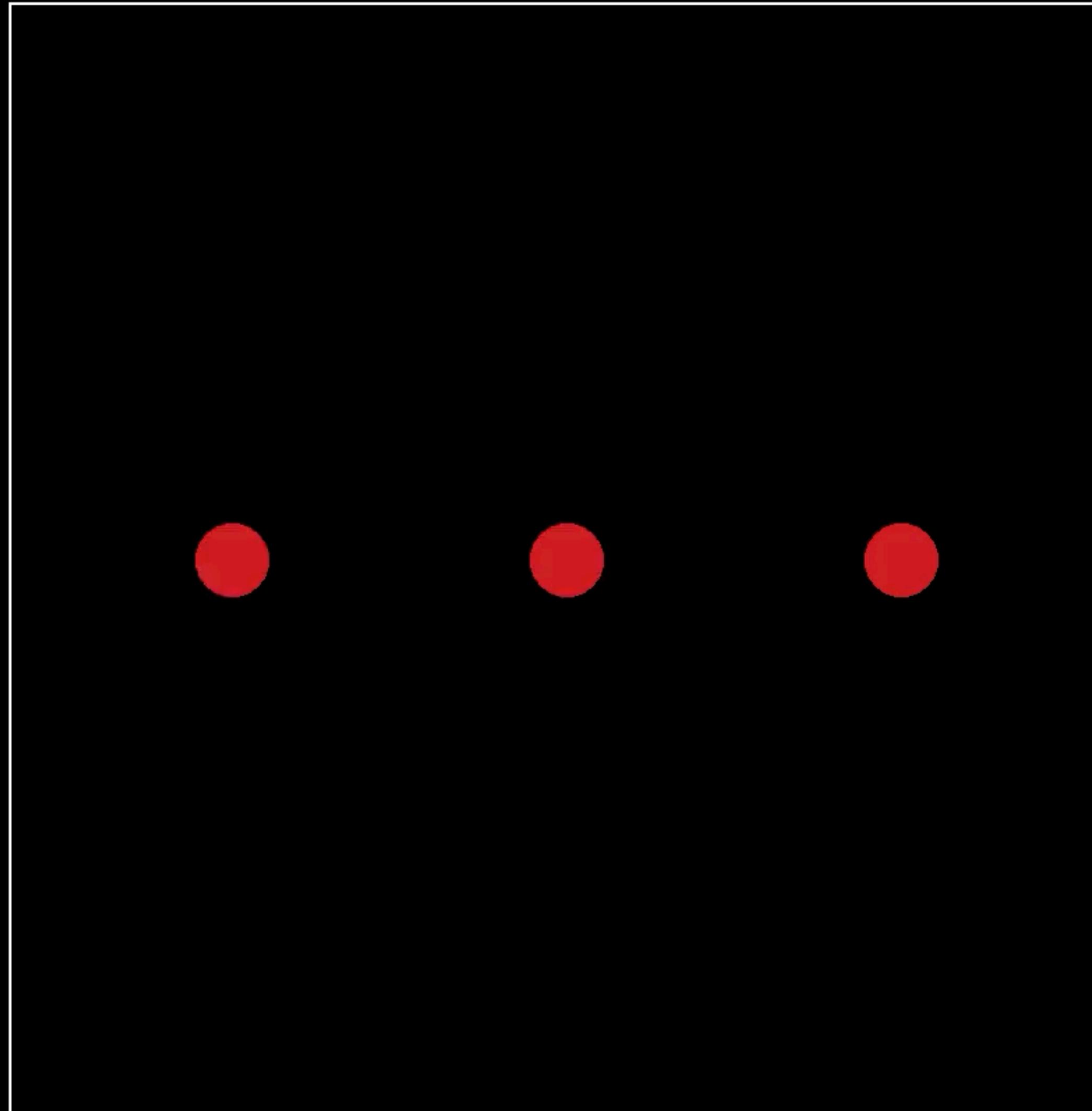
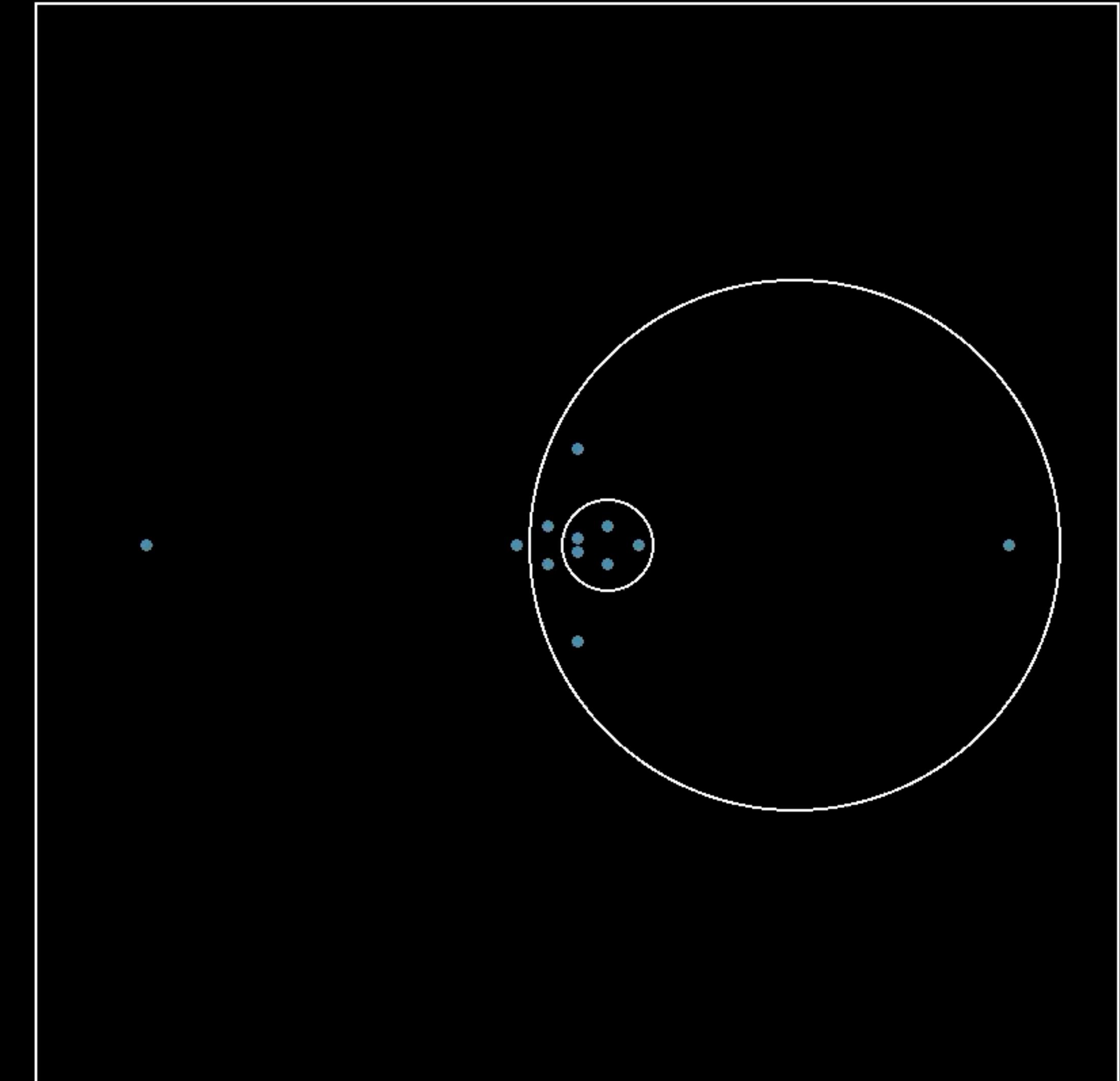
Example: $\Psi_4: \text{UConf}_3\mathbb{C} \rightarrow \text{UConf}_6\mathbb{C}$



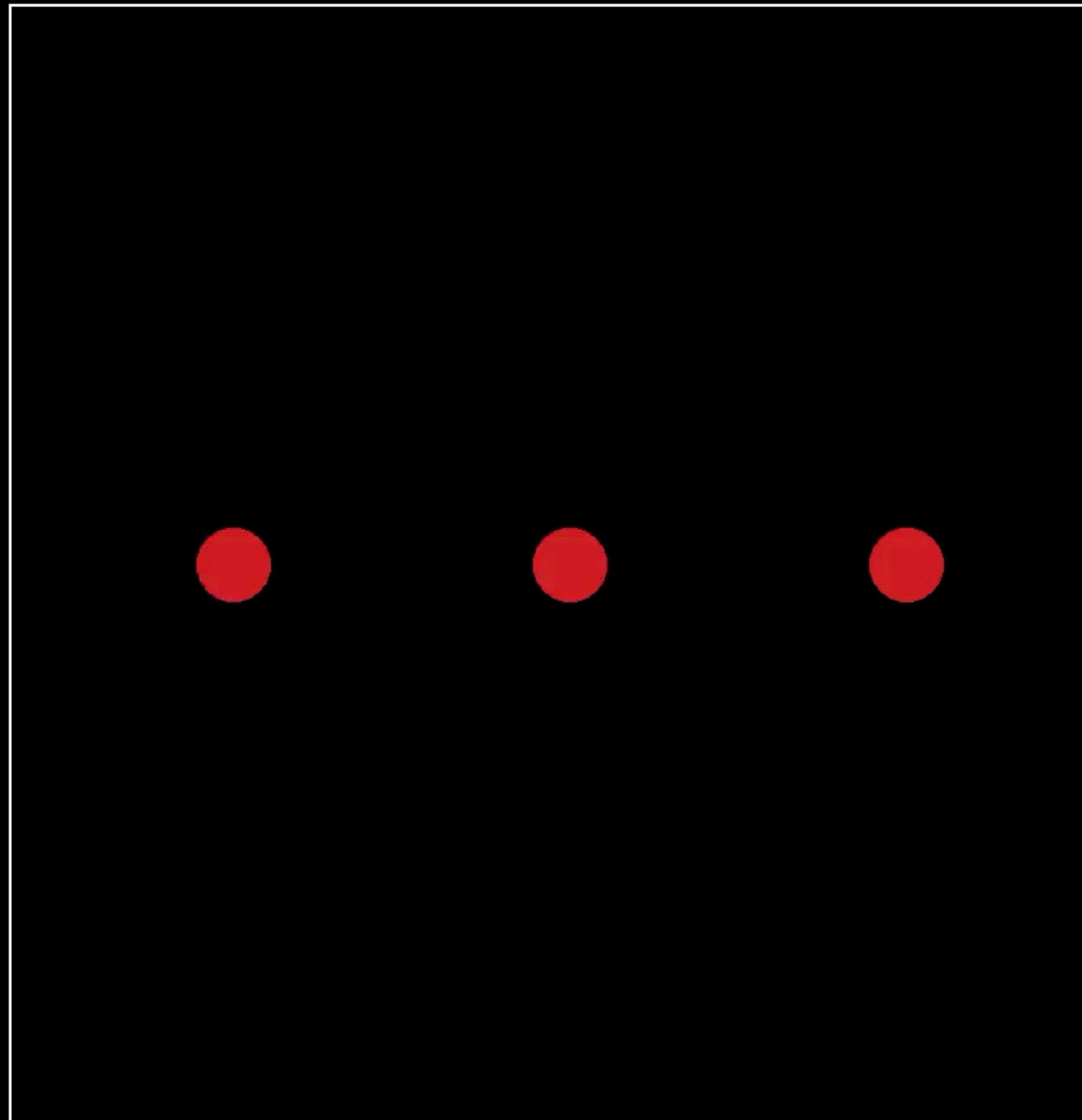
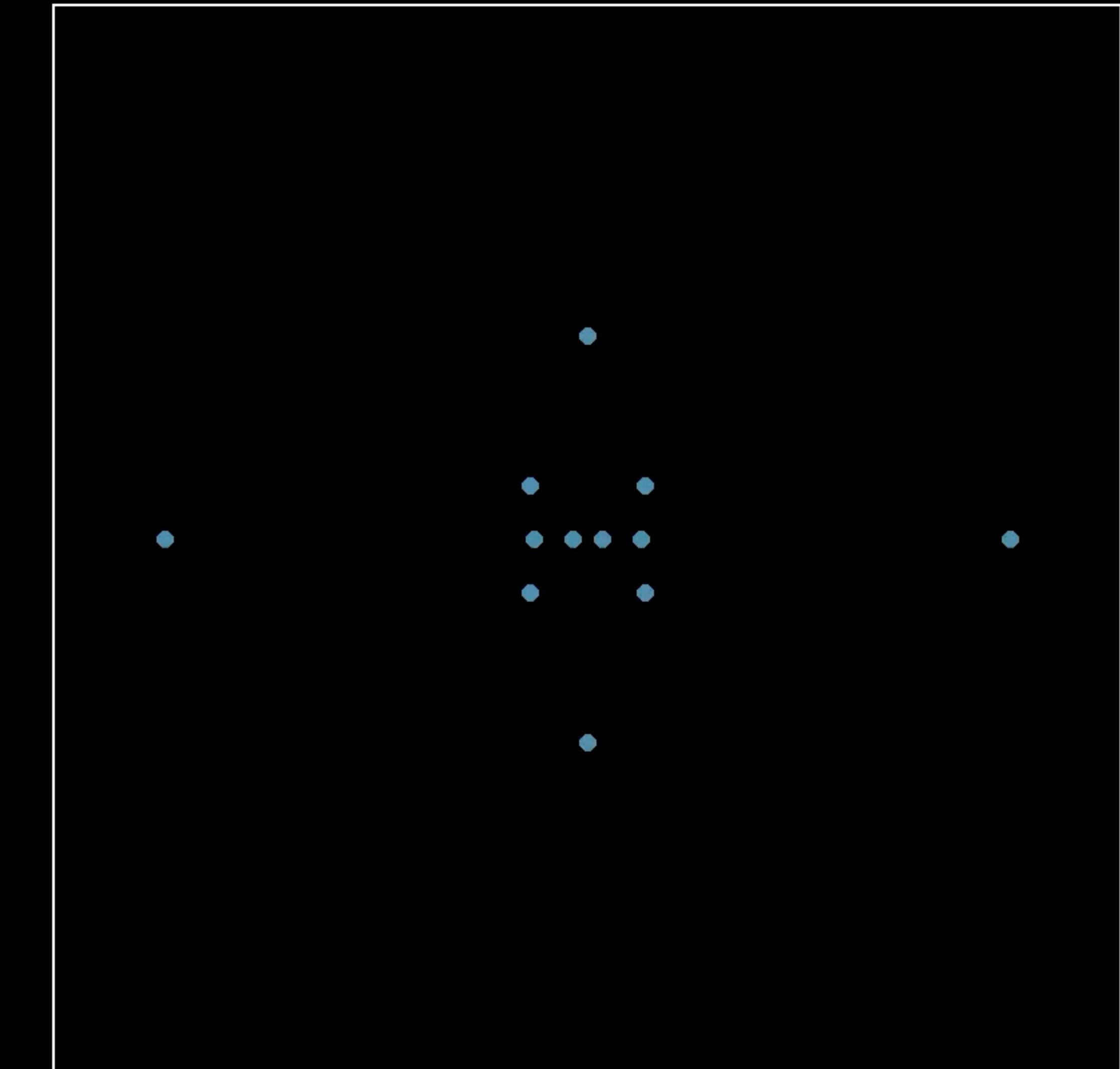
Example: $\Psi_5: \text{UConf}_3\mathbb{C} \rightarrow \text{UConf}_{12}\mathbb{C}$



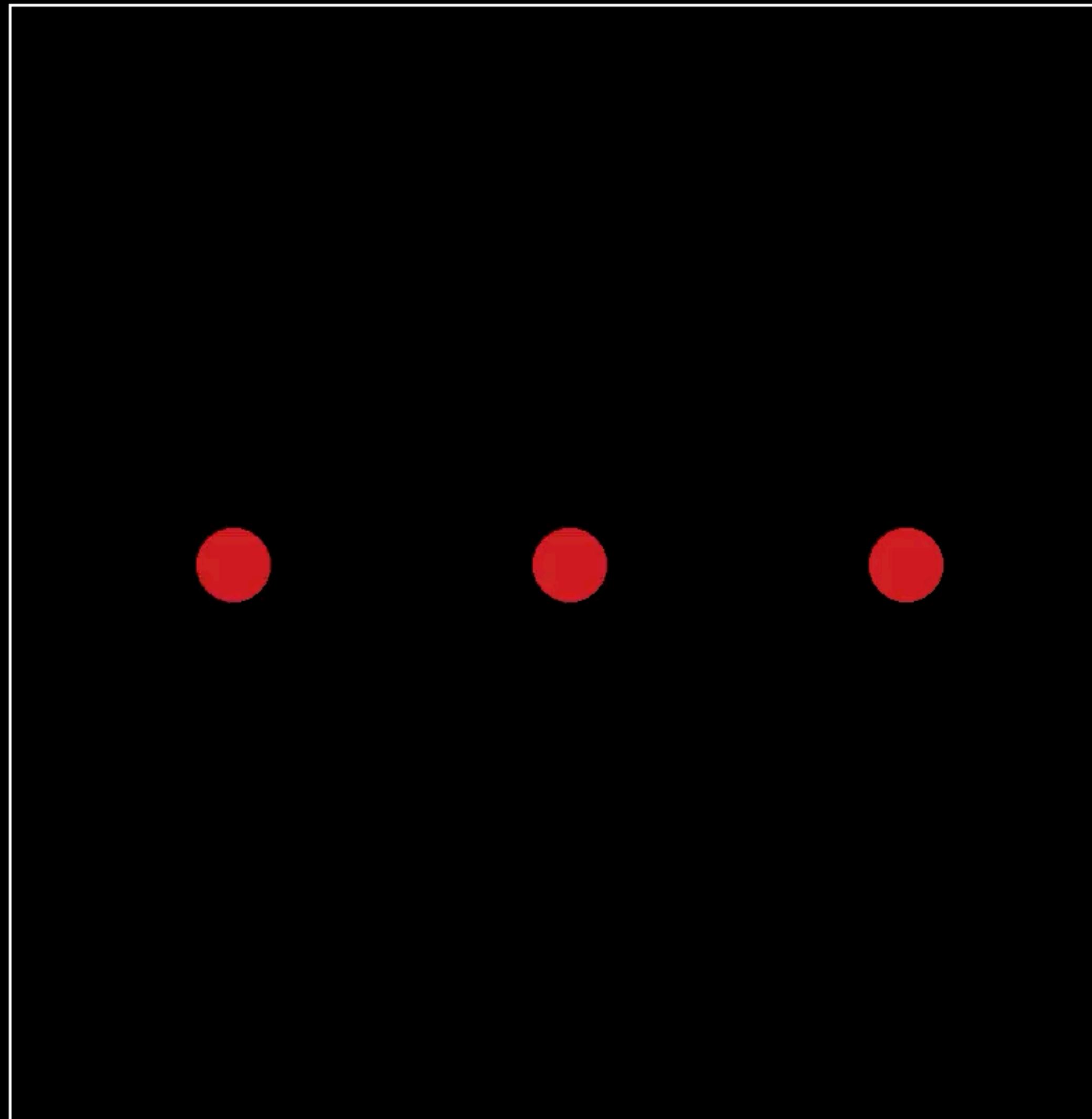
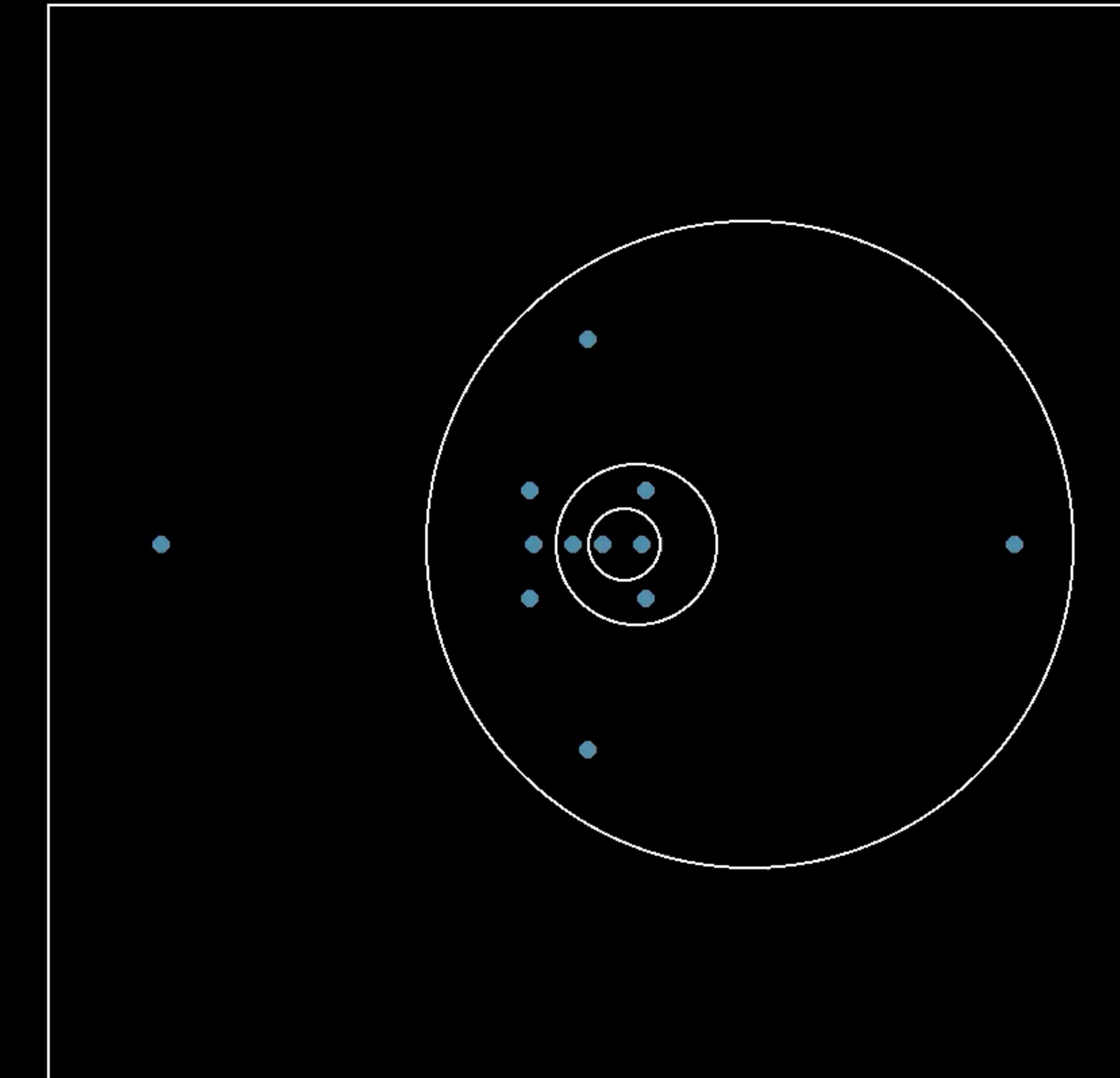
Example: $\Psi_5: \text{UConf}_3\mathbb{C} \rightarrow \text{UConf}_{12}\mathbb{C}$



Example: $\Psi_6: \text{UConf}_3\mathbb{C} \rightarrow \text{UConf}_{12}\mathbb{C}$



Example: $\Psi_6: \text{UConf}_3\mathbb{C} \rightarrow \text{UConf}_{12}\mathbb{C}$



General elliptic curve construction:

For $1 < k_1 < \dots < k_\ell$, define $\Psi_{k_1, \dots, k_\ell} : \text{UConf}_3 \mathbb{C} \rightarrow \text{UConf}_{m_{k_1} + \dots + m_{k_\ell}} \mathbb{C}$ by

$$\Psi_{k_1, \dots, k_\ell}(X) := \Psi_{k_1}(X) \cup \dots \cup \Psi_{k_\ell}(X)$$

General elliptic curve construction:

For $1 < k_1 < \dots < k_\ell$, define $\Psi_{k_1, \dots, k_\ell} : \text{UConf}_3 \mathbb{C} \rightarrow \text{UConf}_{m_{k_1} + \dots + m_{k_\ell}} \mathbb{C}$ by

$$\Psi_{k_1, \dots, k_\ell}(X) := \Psi_{k_1}(X) \cup \dots \cup \Psi_{k_\ell}(X)$$

Open problem:

Is every holomorphic map between unordered configuration spaces of points in \mathbb{C} equivalent to one of the following types?

- Constant map
- Identity map
- $\Psi_{k_1, \dots, k_\ell}$ or $R \circ \Psi_{k_1, \dots, k_\ell}$ for some $1 < k_1 < \dots < k_\ell$.

Thank you!