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We want to classify holomorphic maps .# — .V between moduli spaces.

UCont, C is the unordered configuration space for n distinct points in C.
ﬂl(UCOnfnC) — Bn — <01, e oo Un_1>.

M , , 1s the moduli space of genus g Riemann surfaces with n marked points.

Standing assumption: 2¢ +n > 3in ./ ,, , for technical reasons.

8.1’

Will mostly focus on the case UCont, C — UCont, C.
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Mapping class groups

Let Zg , be an orientable surface of genus g,

with n punctures and b boundary components.

The mapping class group MOd(Zg,n) s
Mod(Zgan) = Jzo({ e Homeo+(2§,n) Sl = idaz}).

Write Modlg , = Mod(Zg ). If n or b are zero we omit them.

We have 7,(/, ,/S,) = Mod, ..
Special case: Mod, ; = SL,Z.

b
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0.n



Universal cover of moduli space

There is an isomorphism of complex-analytic orbifolds
M, IS, =T ,, | Mod,,

— . o
J o 18 called Teichmiiller space, and can be regarded as an bounded domain in Co8—Hn,



Universal cover of moduli space

There is an isomorphism of complex-analytic orbifolds
M, IS, =T ,, | Mod,,

T o 18 called Teichmiiller space, and can be regarded as an bounded domain in Co8—Hn,

Example: 7| ; = H is an open domain in C, and Mod, ; = SL,Z.



Universal cover of moduli space

There is an isomorphism of complex-analytic orbifolds
M, IS, =T ,, | Mod,,

T o 18 called Teichmiiller space, and can be regarded as an bounded domain in Co8—Hn,

Example: 7| ; = H is an open domain in C, and Mod, ; = SL,Z.

We can lift any holomorphic map #,, — #,,, to a holomorphic map 7, , = 7,
between the universal covers.
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T
A holomorphic map B — ., , can be regarded J'

as a holomorphic family of Riemann surfaces over B. g Q

Given a closed loop y: [0,1] — B we can pull back to a family over the interval. A

choice of trivialization defines a homeomorphism of the fiber over y(0) = y(1).

This produces a well defined homomorphism 7z;(B) — Mod, ,, called monodromy.

8,1

[t is the same thing as the induced map on 7, of the original map.
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Finiteness theorems

Fix a base Riemann surface B with finite genus, finitely many punctures.

Fix fiber type (g,n) with 2g +n > 3.

Conjecture (Shafarevich, ‘63): There are finitely many non-isomorphic, non-isotrivial
holomorphic families of Riemann surfaces of genus g and n punctures over B.

Theorem (Parshin ‘68): True when ¢ > 2, n = 0, and B is closed.

Theorem (Arkelov, ‘71): True when ¢ > 2, n = 0.

Theorem (Imayoshi—Shiga ‘88): True.
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Rigidity of monodromy

Imayoshi and Shiga’s proof uses another rigidity theorem that they prove.

Fix B, and (g, n) as before.

Theorem (Imayoshi—Shiga ‘88): If two non-isotrivial holomorphic families of

Riemann surfaces of type (g, n) over B have the same monodromy, then they are
equal.

More generally (Antonakoudis—Aramayona—Souto ‘18) show a similar result for
B any quasi-projective variety.

Corollary: Any two holomorphic maps UCont,C — UCont, C that induce the same

homomorphism B, — B, have induced maps UCont,C — (UCont,,C)/Aft that are
either constant, or exactly equal.
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Summary

Two holomorphic maps f, g: UCont, C — UCont, C are affine equivalent if they define
the same map UCont, C — (UCont, C)/Aft.

In this talk, non-constant means not afline equivalent to a constant map.

Two homomorphisms @,y : B, — B, are center equivalent if, up to post-composition
by an element of Aut(B,), they define the same map B, — B, ./Z(B,,).

{non—constant holomorphic f: UCont,C — UConfmC} / affine equivalence

1S h\\ie diue
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{non-cyclic homomorphisms ¢: B, — Bm} / center-equivalence
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Classifying holomorphic maps

This suggests the following rough strategy for classifying holomorphic maps # —
e Write down as many holomorphic maps .# — ./ as you can.

e Classify the homomorphisms 7 (M) — 7;(N).

Lin showed the following, which is in a regime where this strategy applies.

Theorem (Lin, ‘04): For n > 5, all non-constant holomorphic maps
UCont,C — UCont,C are affine equivalent to the identity.

However in general there are non-trivial homomorphisms 7z (./#) — r;(.//) which are
not induced by holomorphic maps.
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Non-holomorphic homomorphisms

There is a natural inclusion homomorphism B, < B, | ;.
[t is induced by a continuous map UConf,C — UCont,  C that “adds a point at co”.

{(xXp,...,x,} — {xl, s X [ X | e+ x| F 1}.

[t is not induced by a holomorphic map.

Why?
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Mapping class group actions

Mod(X) acts on the simple closed curves in a

surface 2, up to isotopy.

A multicurve 1s a finite set of pairwise disjoint and
non-isotopic simple closed curves in 2.

It is essential if none of these curves are isotopic to
a boundary component or a puncture.

A homomorphism ¢: G — Mod(X) is reducible if
there is a multicurve in 2 preserved up to isotopy
by ¢(G). If not reducible, then say irreducible.
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Irreducibility is a requirement

Theorem (de Pool—Souto, 24): If M is an irreducible quasi-projective variety, and

F: M — M,,is anon-constant holomorphic map, then F.: 7;(M) — Mod, , is
irreducible.

Suffices to prove for Riemann surfaces M of finite type.

(McMullen, ‘00) proved this for closed Riemann surfaces M.

Corollary: A holomorphic map f: UCont,C — UCont, C must induce an irreducible
homomorphism f:: B, = B, .
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Other results

Theorem (Chen—Kordek—Margalit, ‘23): If n > 5, and m < 2n, and ¢: B, — B,,

is irreducible and non-cyclic, then m = n and ¢ is center equivalent to the identity.
They conjecture the m < 2n bound is not necessary.

Theorem (Chen—Salter, ‘23): If n > 5, and m < 2n, then every holomorphic map
UCont,C — UCont, C is affine equivalent to the identity or a constant map.
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What about n = 3 or 4?

By = (0}, 0, | 610,01 = 0,010,) = (. B | @’ = 5*),
where a = 0,0, and ) = 0,0,0;.
We obtain a wealth of endomorphisms of B, via maps of the form (g, s € B5):
a— gag~ !, B hph~.

Theorem (H—Schillewaert, ‘23): These provide infinitely many center-inequivalent
irreducible homomorphisms B; — B;.

We can precompose each of these with Ferrari’s map R.: B, — B; to obtain a wealth
of irreducible homomorphisms B, — B;.
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Dehn twists

Let y be a curve in an orientable surface 2. The Dehn twist I, e Mod(2) about y is

defined as ftollows.

Take an annular neighborhood of y, viewed as the cylinder § L% [0,1].

Then 7, acts by (€, 1)

elsewhere.

— (9™ 1) on the annulus, and the identity

e
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Multitwists

If we let y,, ..., 7, be the curves in a multicurve on an orientable surface 2, then the
Dehn twists 7, , ..., T, all commute in Mod(2).

We call an element of the subgroup (7, , ..., T, ) = Z" a multitwist.
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Teichmuller metric

There is a metric dp, on 7, , called the Teichmiiller metric, preserved by Mod, .

8

Theorem (Royden ‘71, Earle—Kra, ‘74) If 2¢ + n > 3, and B is a Riemann surface

with universal cover B = H, then every holomorphic map B — ./, , is distance non-

increasing with respect to dy,,, and dyeiq.

For f € Mod, ,, we may define the translation length to be

1(f) = Il drpeie(X, ().

X€ET ,,

Theorem (Bers, ‘78) 7(f) = 0 if and only if f* is a multitwist for some k > 1.
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Image of standard braid generators

Proposition: If f: UCont, C — UCont, C is holomorphic, and f.: B, = B,, is the

induced homomorphism, then f.(o;) is a root of a multitwistin B, forall 1 <1 < n.

Proof sketch:

7 - - U/f\. C,/l\ MQ—QfUL N
{ I i

T wrk Terdy
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Elliptic curve constructions

Given (X, Xy, X3} € UCont;C, can construct an elliptic curve

y2 = (X — X)X — X)X — X3).

Get a holomorphic map ¥, : UConf;C — UCont,, C by

WV, (1x1, X%y, X3}) = {x-coordinates of points of order k}



Example: ¥,;: UCont;C — UCont,C




Example: ¥,;: UCont;C — UCont,C




Theorem: (H—Schillewaert, ‘23)

If f: UCont,C — UCont, C is holomorphic, n > 3, and m < max{n,4}, then it is
equivalent to one of the following

® 3 constant map,

* the identity map,

e R: UCont,C - UCont;C

e ¥,: UCont;C — UCont,C

e ¥,oR: UCont,C — UCont,C
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General elliptic curve construction:

For 1 <k < - <k, define¥; ,: UConf;C — UCont C by

mk1+°--+mkf

\Pkl,...,kf(X) .— l:[1]{1()() U .- U \Pkf(X)

Open problem:

[s every holomorphic map between unordered configuration spaces of points in C
equivalent to one of the following types?

e Constant map
e Identity map

o V) jorReW, . forsomel <k <-- <k,



Thank you!



