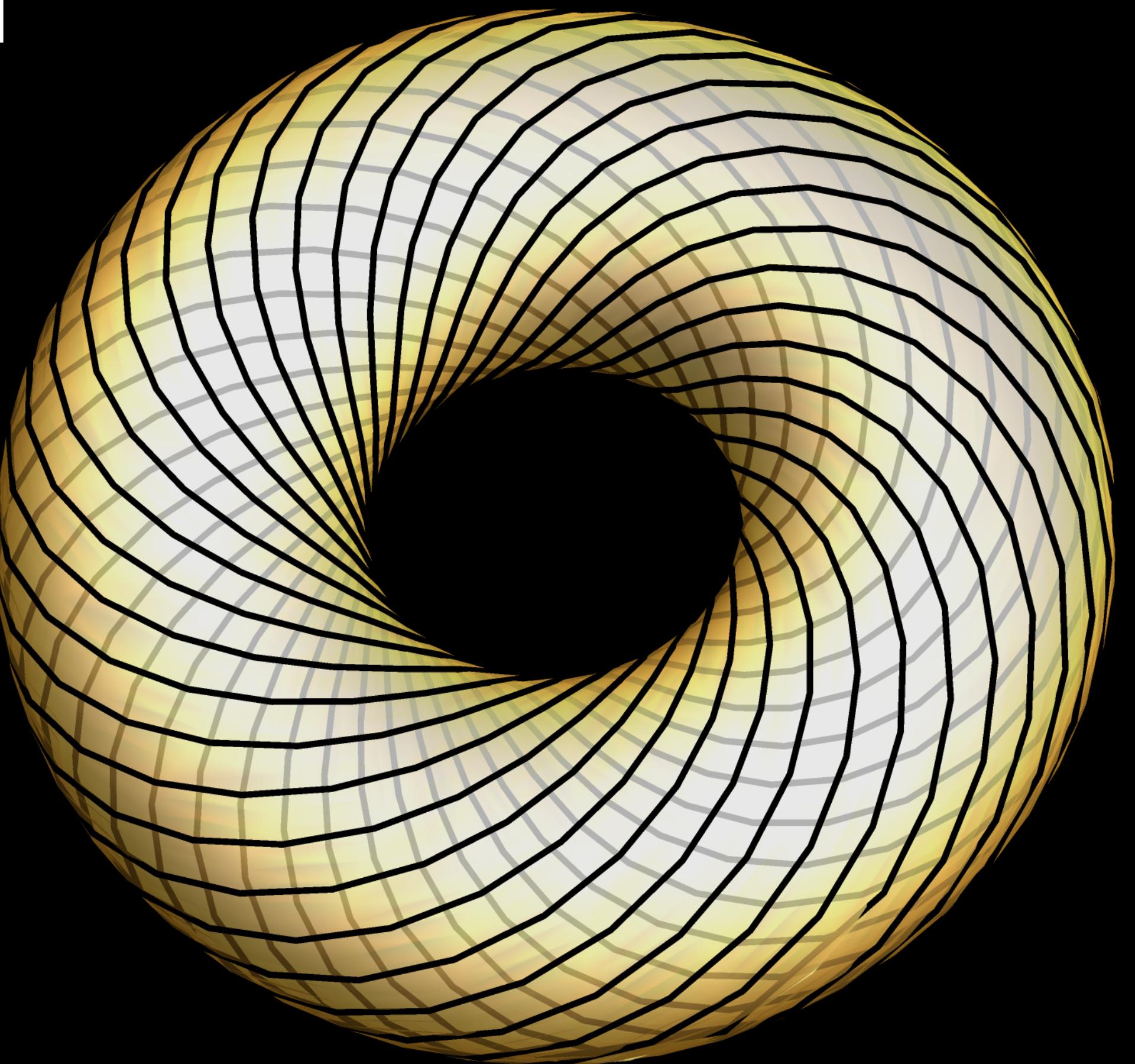


A Brief Overview of Measure Rigidity

Rose Elliott Smith
Rice University



Setup

M is a topological space.

$f: M \rightarrow M$ is a measurable map.

Setup

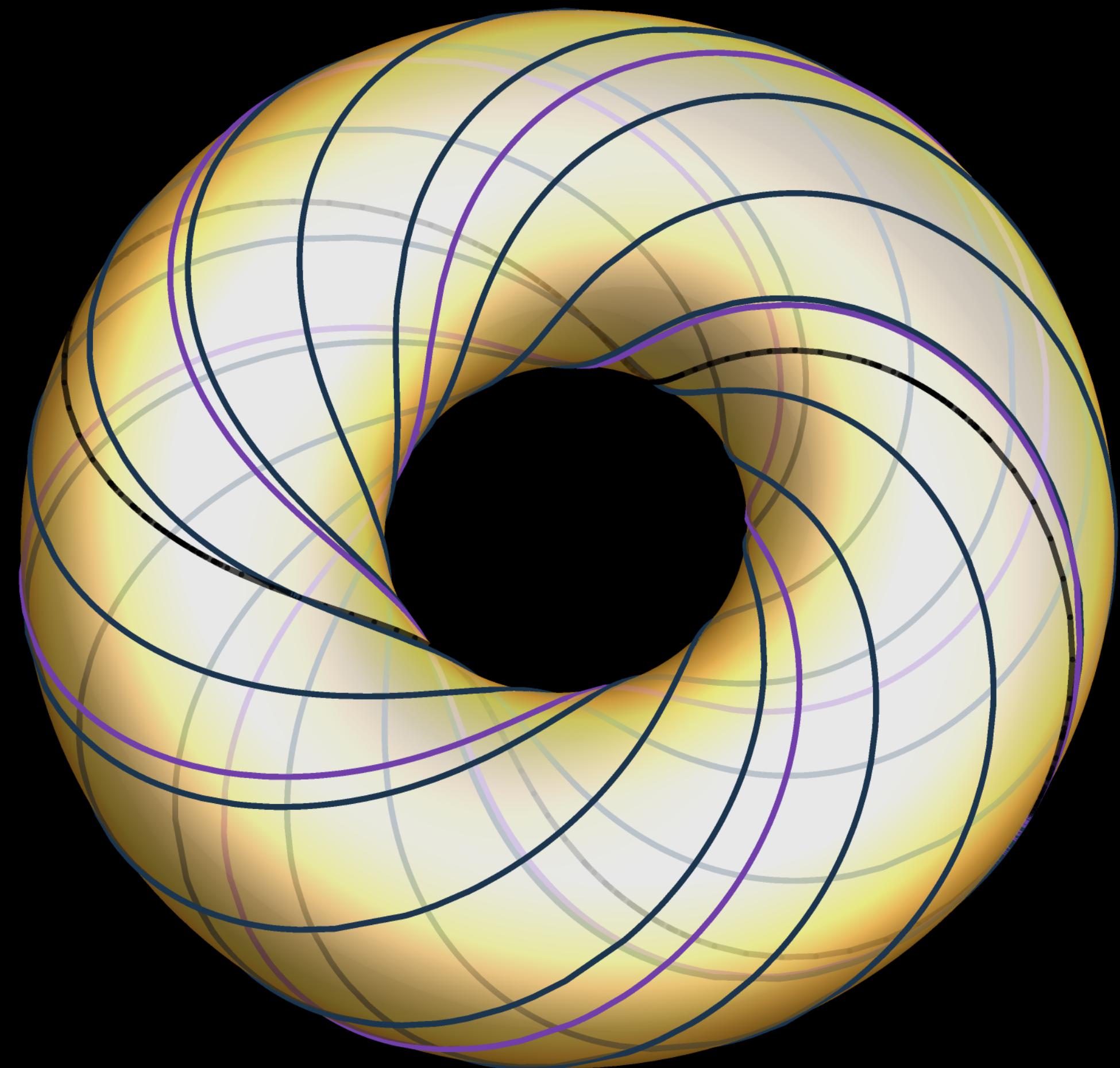
M is a topological space.

$f: M \rightarrow M$ is a measurable map.

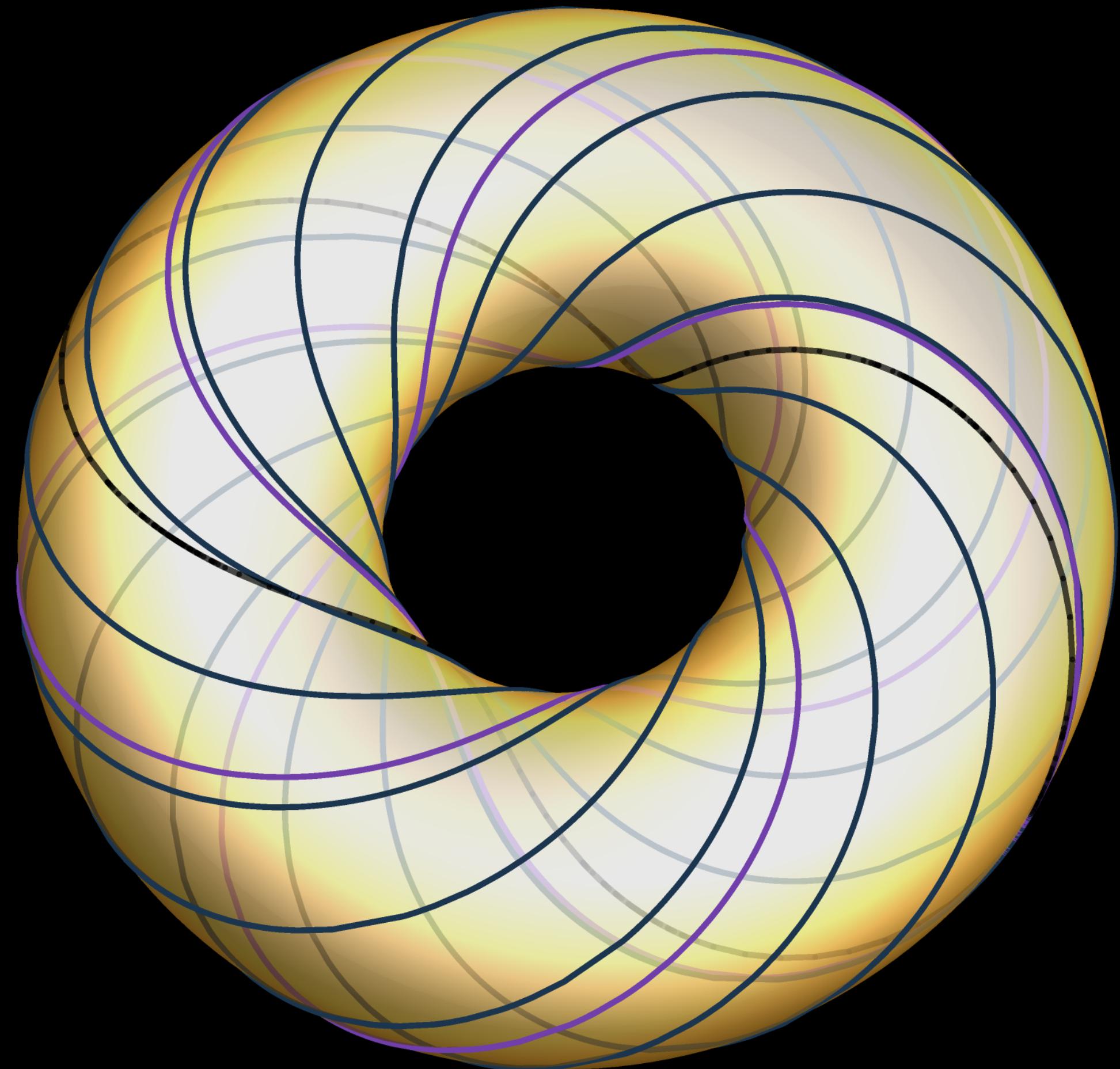
What are the orbits of f ?

Motivation

$x, f(x), f^2(x), f^3(x), \dots$



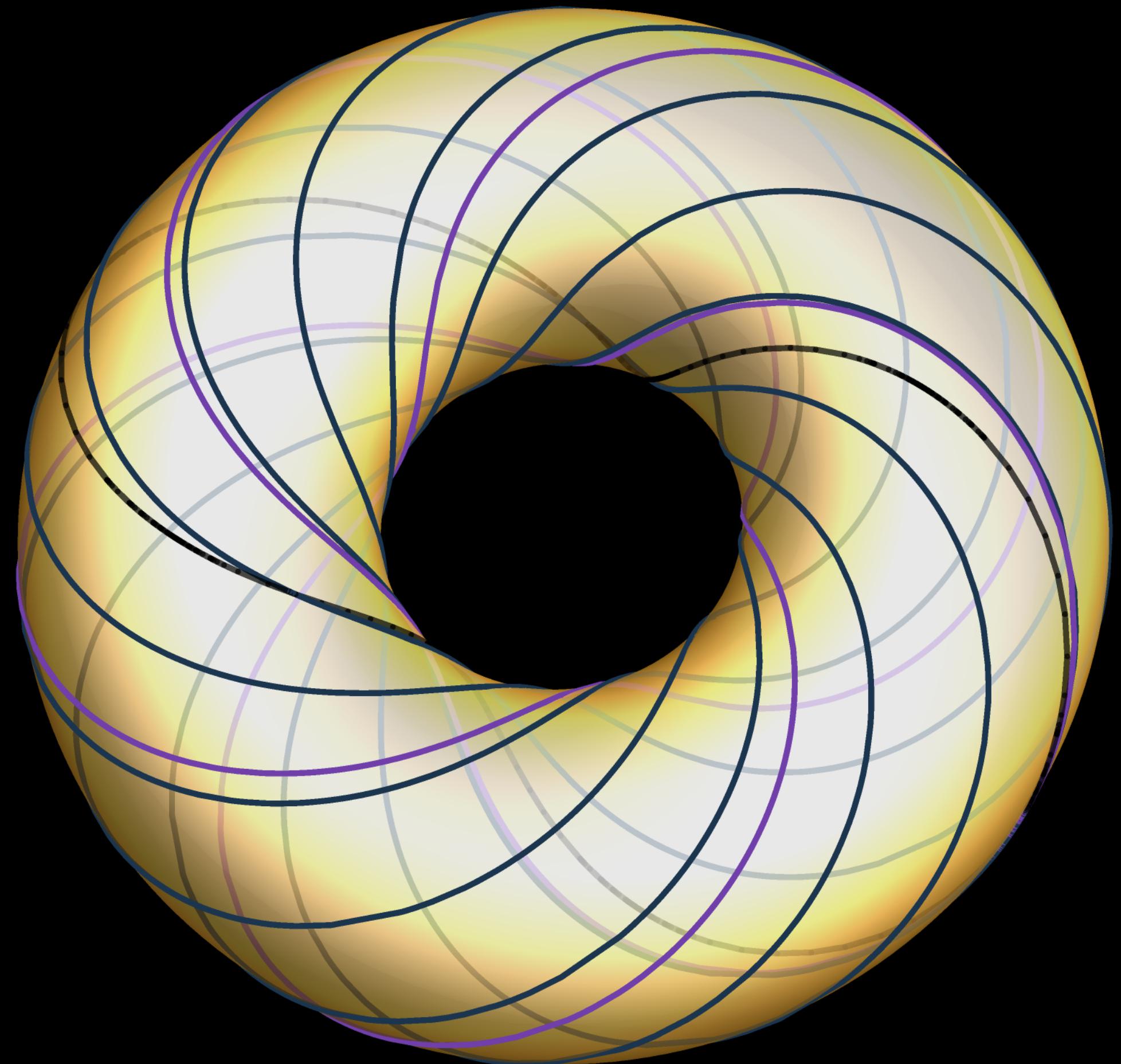
Motivation



$x, f(x), f^2(x), f^3(x), \dots$

$$\mu_4 = \frac{1}{4}(\delta_x + \delta_{f(x)} + \delta_{f^2(x)} + \delta_{f^3(x)})$$

Motivation

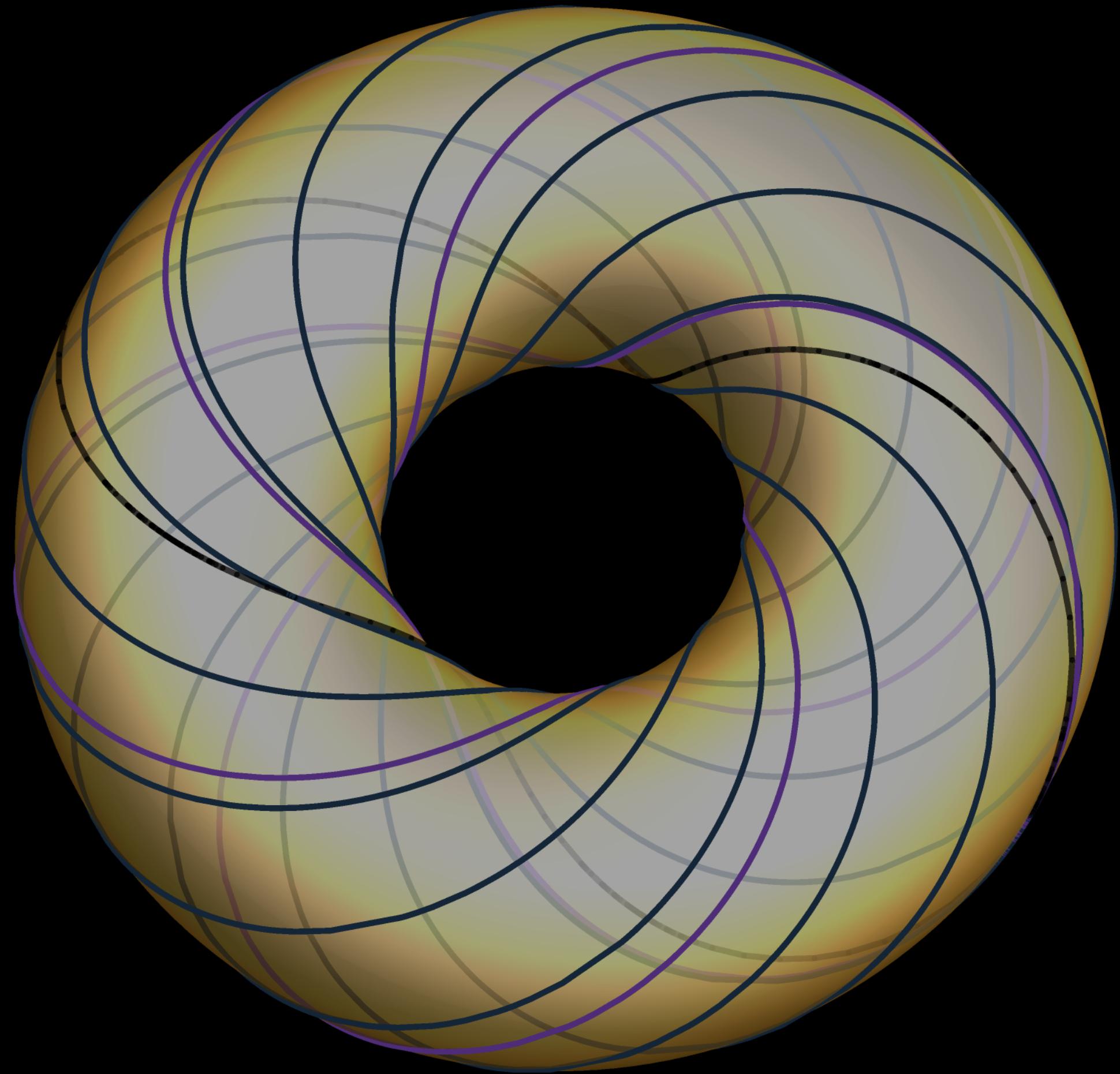


$x, f(x), f^2(x), f^3(x), \dots$

$$\mu_4 = \frac{1}{4}(\delta_x + \delta_{f(x)} + \delta_{f^2(x)} + \delta_{f^3(x)})$$

$$\mu_n = \frac{1}{n} \sum_{i=0}^{n-1} \delta_{f^i(x)}$$

Motivation



$$x, f(x), f^2(x), f^3(x), \dots$$

$$\mu_4 = \frac{1}{4}(\delta_x + \delta_{f(x)} + \delta_{f^2(x)} + \delta_{f^3(x)})$$

$$\mu_n = \frac{1}{n} \sum_{i=0}^{n-1} \delta_{f^i(x)}$$

any weak-* limit of μ_n
is f-invariant

Setup

M is a topological space.

$f: M \rightarrow M$ is a measurable map.

μ is an f -invariant probability measure on M

Setup

M is an n -dimensional Riemannian manifold.

$f: M \rightarrow M$ is a smooth diffeomorphism.

μ is an ergodic f -invariant probability measure on M

Setup

M is an n -dimensional Riemannian manifold.

$f: M \rightarrow M$ is a smooth diffeomorphism.

μ is an ergodic f -invariant probability measure on M

Many more types of dynamical system:

- random walks
- group actions
- flows (i.e., geodesic flows, Hamiltonian flows, etc)

Setup

M is an n -dimensional Riemannian manifold.

$f: M \rightarrow M$ is a smooth diffeomorphism.

μ is an ergodic f -invariant probability measure on M

Many more types of dynamical system:

- random walks
- group actions
- flows (i.e., geodesic flows, Hamiltonian flows, etc)

And many more settings:

- homogeneous dynamics (“nice” actions on G/Γ for G a Lie group)

Setup

M is an n -dimensional Riemannian manifold.

$f: M \rightarrow M$ is a smooth diffeomorphism.

μ is an ergodic f -invariant probability measure on M

G a Lie group ($SL_2 \mathbb{R}$)

Γ a lattice ($SL_2 \mathbb{Z}$)

G/Γ is a homogeneous space

Many more types of dynamical system:

- random walks
- group actions
- flows (i.e., geodesic flows, Hamiltonian flows, etc)

And many more settings:

- homogeneous dynamics (“nice” actions on $\underline{G/\Gamma}$ for G a Lie group)

Setup

M is an n -dimensional Riemannian manifold.

$f: M \rightarrow M$ is a smooth diffeomorphism.

μ is an ergodic f -invariant probability measure on M

Many more types of dynamical system:

- random walks
- group actions
- flows (i.e., geodesic flows, Hamiltonian flows, etc)

And many more settings:

- homogeneous dynamics (“nice” actions on $\underline{G/\Gamma}$ for G a Lie group)

G a Lie group ($SL_2 \mathbb{R}$)

Γ a lattice ($SL_2 \mathbb{Z}$)

G/Γ is a homogeneous space

Given $g \in G$, can act on G/Γ
on the left, i.e.,

$$g \cdot (x\Gamma) = (gx)\Gamma$$

Setup

M is an n -dimensional Riemannian manifold.

$f: M \rightarrow M$ is a smooth diffeomorphism.

μ is an ergodic f -invariant probability measure on M

Many more types of dynamical system:

- random walks
- group actions
- flows (i.e., geodesic flows, Hamiltonian flows, etc)

And many more settings:

- homogeneous dynamics (“nice” actions on $\underline{G/\Gamma}$ for G a Lie group)
- Teichmuller dynamics
- Complex dynamics

G a Lie group ($SL_2 \mathbb{R}$)

Γ a lattice ($SL_2 \mathbb{Z}$)

G/Γ is a homogeneous space

Given $g \in G$, can act on G/Γ
on the left, i.e.,

$$g \cdot (x\Gamma) = (gx)\Gamma$$

What is measure rigidity?

What is measure rigidity?

Statements like:

All non-atomic invariant measures are volume.

All invariant measures are finitely supported.

There is only one invariant measure.

When can you classify
measures?

When can you classify measures?

This is a well-studied question. To name a few answers:
Ratner, Benoist-Quint, Eskin-Mirzakhani, Eskin-Lindenstrauss,
Brown-Rodriguez Hertz, Brown-Eskin-Filip-Rodriguez Hertz...

$$SL_2\mathbb{R}/SL_2\mathbb{Z}$$

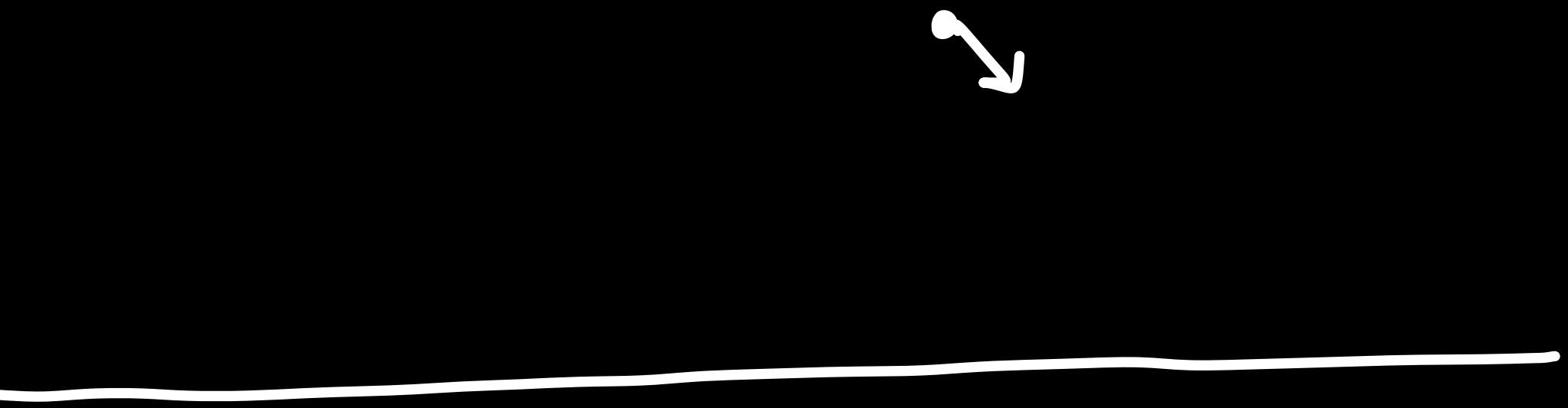
$$U=\left\{\begin{pmatrix}1&t\\0&1\end{pmatrix}\mid t\in\mathbb{R}\right\}$$

$$A=\left\{\begin{pmatrix}e^t&0\\0&e^{-t}\end{pmatrix}\mid t\in\mathbb{R}\right\}$$

$$\mathbb{P}\mathbb{S}\mathbb{L}_2\mathbb{R} \approx \mathbb{P}^1\mathbb{H}$$

$$SL_2\mathbb{R}/SL_2\mathbb{Z}$$

$$U = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$



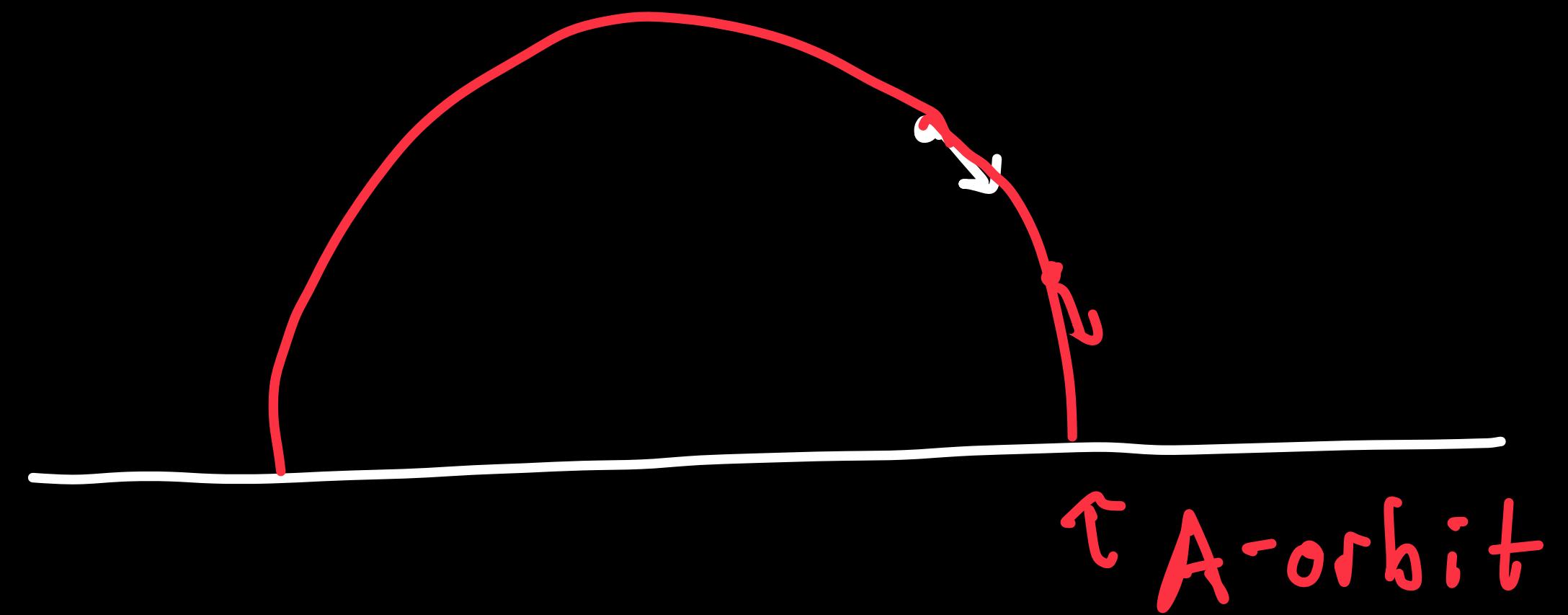
$$A = \left\{ \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

$$\mathbb{P}SL_2\mathbb{R} \approx \mathbb{P}^1\mathbb{H}$$

$$SL_2\mathbb{R}/SL_2\mathbb{Z}$$

$$U = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

$$A = \left\{ \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

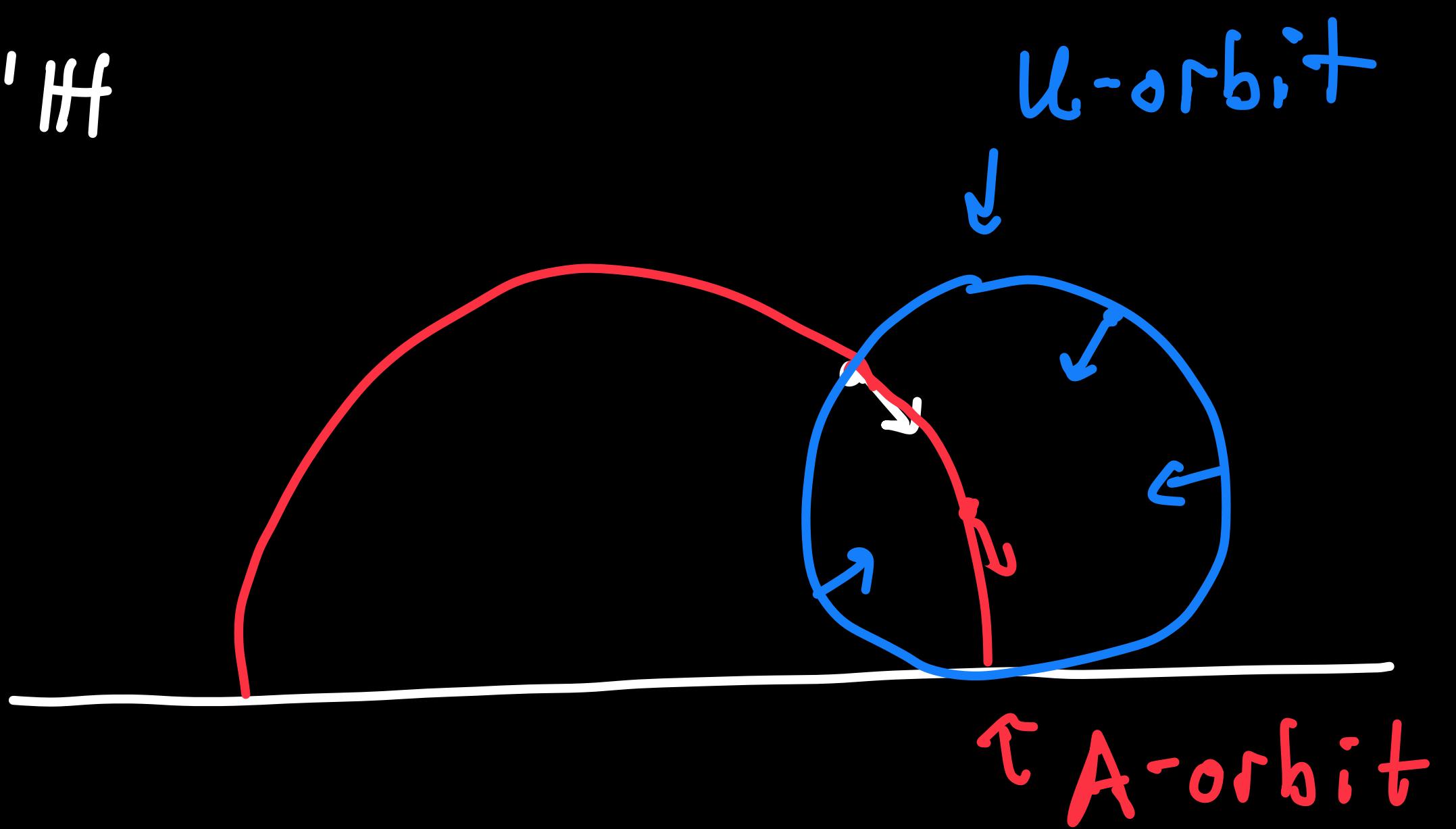


$SL_2\mathbb{R}/SL_2\mathbb{Z}$

$$U = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

$$A = \left\{ \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

PSL₂ R ≈ T' H



$$SL_2 \mathbb{R} / SL_2 \mathbb{Z}$$

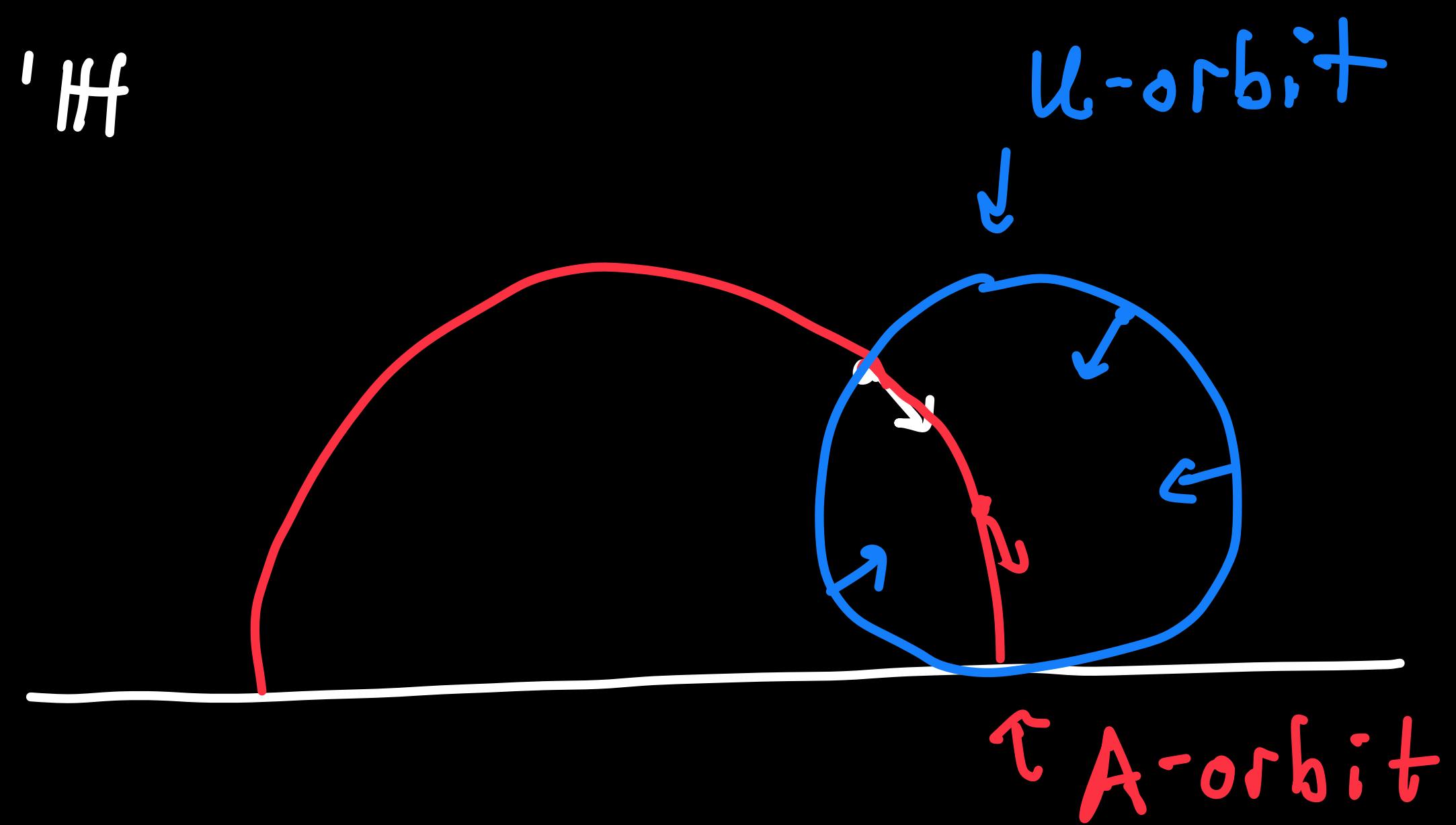
$$U = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

τ Horocyclic flow

$$A = \left\{ \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

τ geodesic flow

$$PSL_2 \mathbb{R} \approx \mathbb{P}^1 \mathbb{H}$$



$$SL_2 \mathbb{R} / SL_2 \mathbb{Z}$$

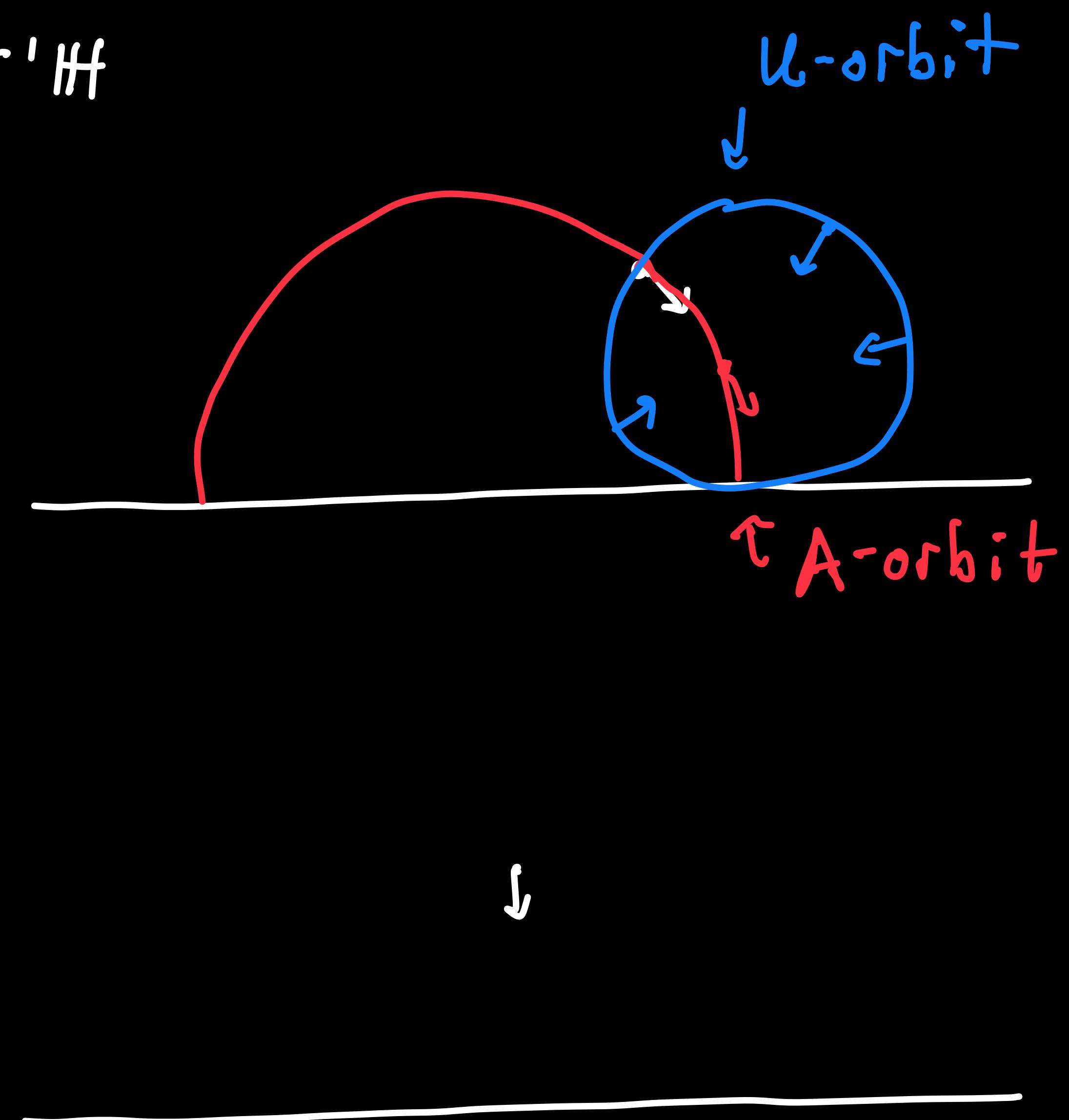
$$U = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

τ Horocyclic flow

$$A = \left\{ \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

τ geodesic flow

$$PSL_2 \mathbb{R} \approx \mathbb{P}^1 \mathbb{H}$$



$$SL_2 \mathbb{R} / SL_2 \mathbb{Z}$$

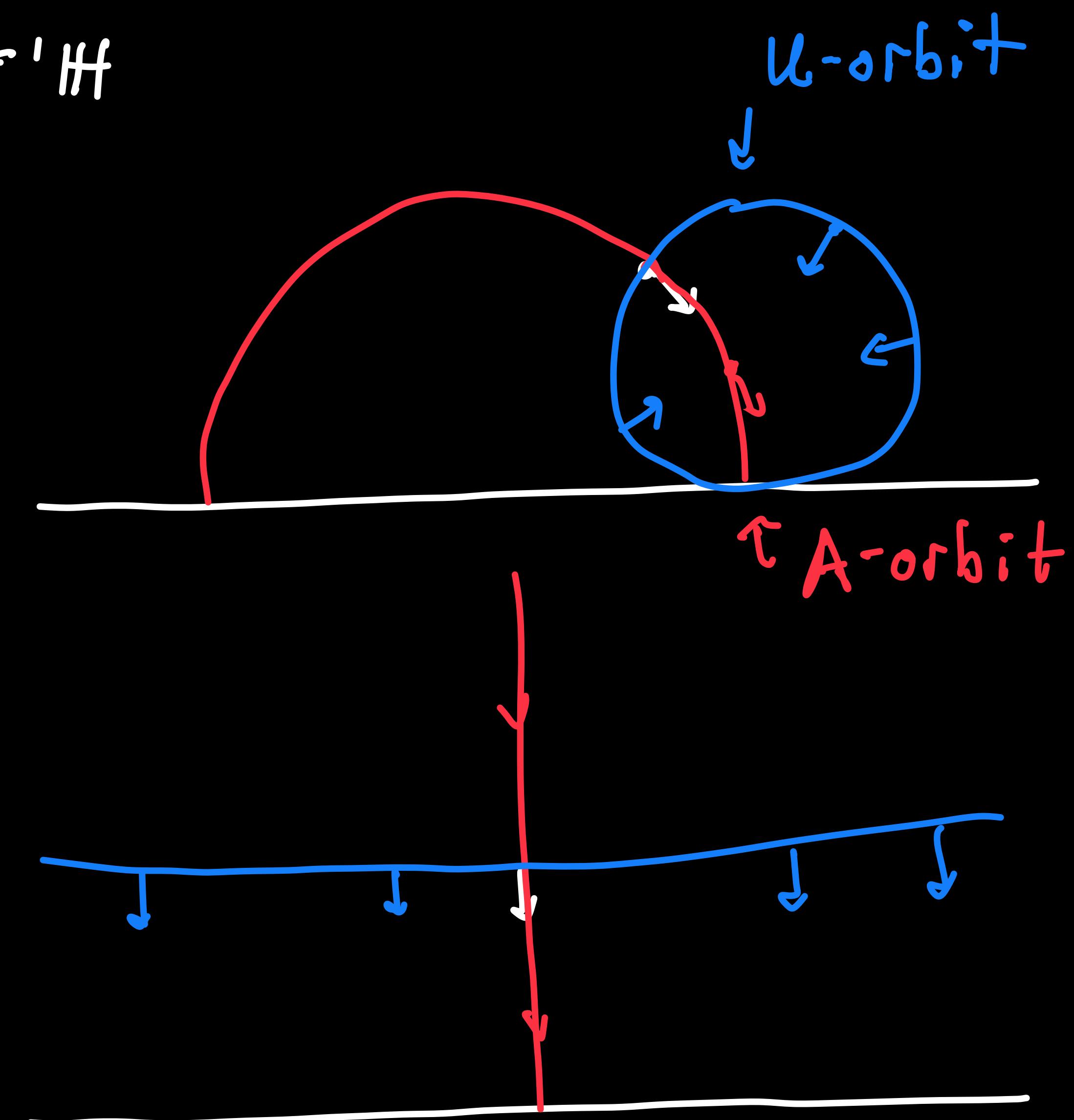
$$U = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

τ Horocyclic flow

$$A = \left\{ \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

τ geodesic flow

$$PSL_2 \mathbb{R} \approx \mathbb{H}^1$$



$$SL_2 \mathbb{R} / SL_2 \mathbb{Z}$$

$$U = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

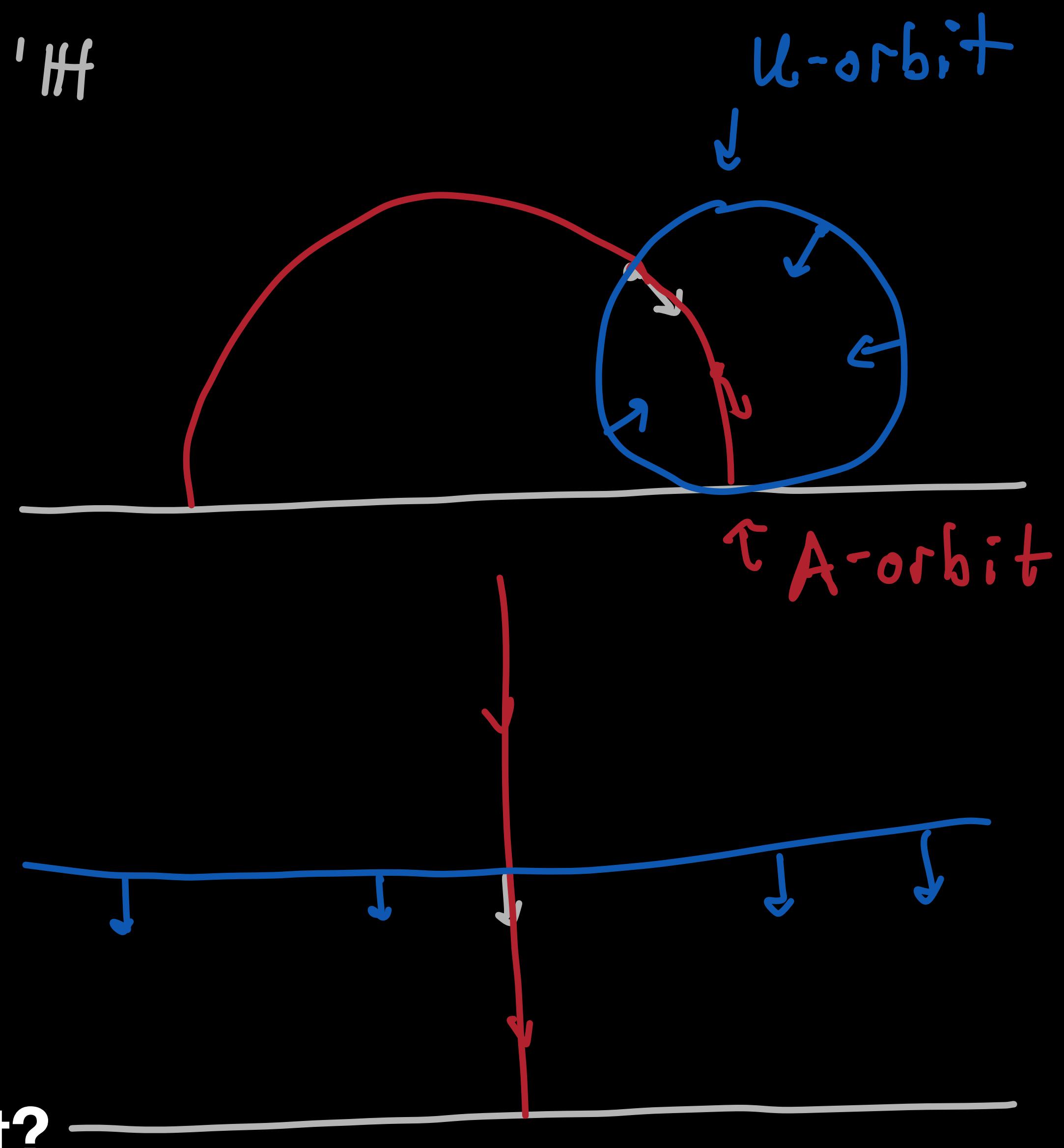
τ Horocyclic flow

$$A = \left\{ \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

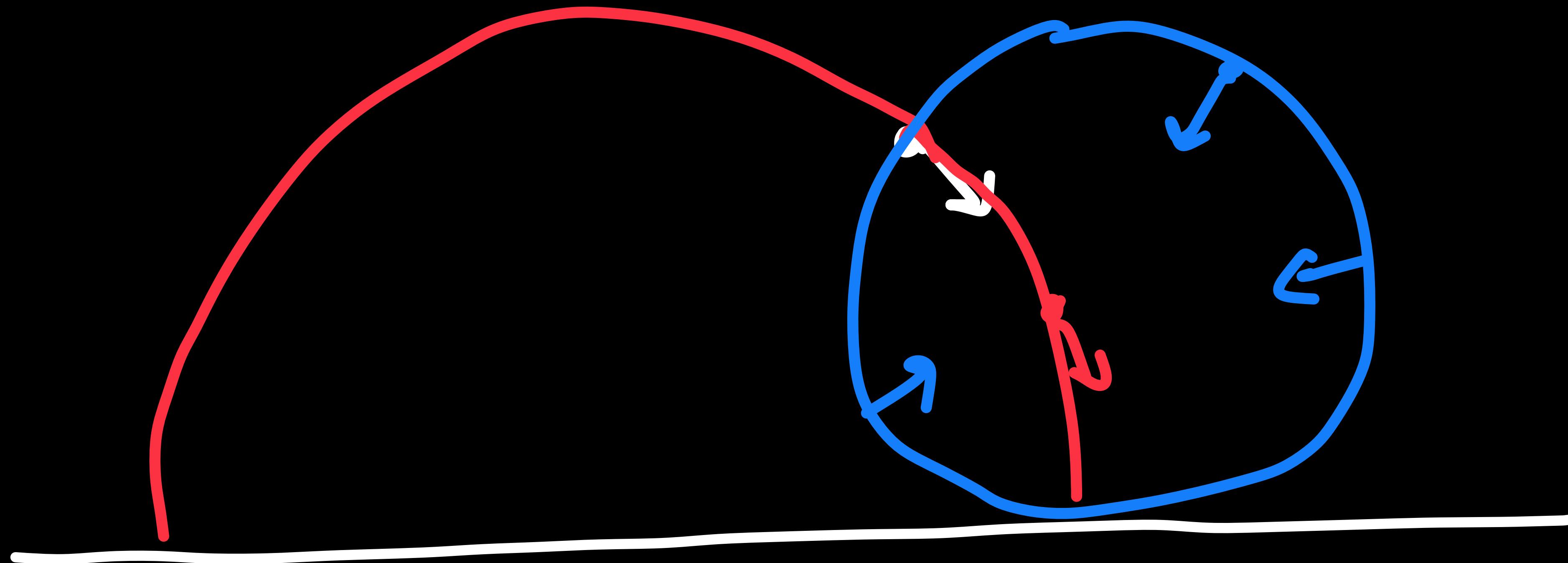
τ geodesic flow

What does this look like in the quotient?

$$PSL_2 \mathbb{R} \approx \mathbb{H}^1$$



$SL_2 \mathbb{R} / SL_2 \mathbb{Z}$



$SL_2 \mathbb{R} / SL_2 \mathbb{Z}$

The image of a closed A -orbit projected onto the fundamental domain of the $SL_2 \mathbb{Z}$ action on \mathbb{H} .

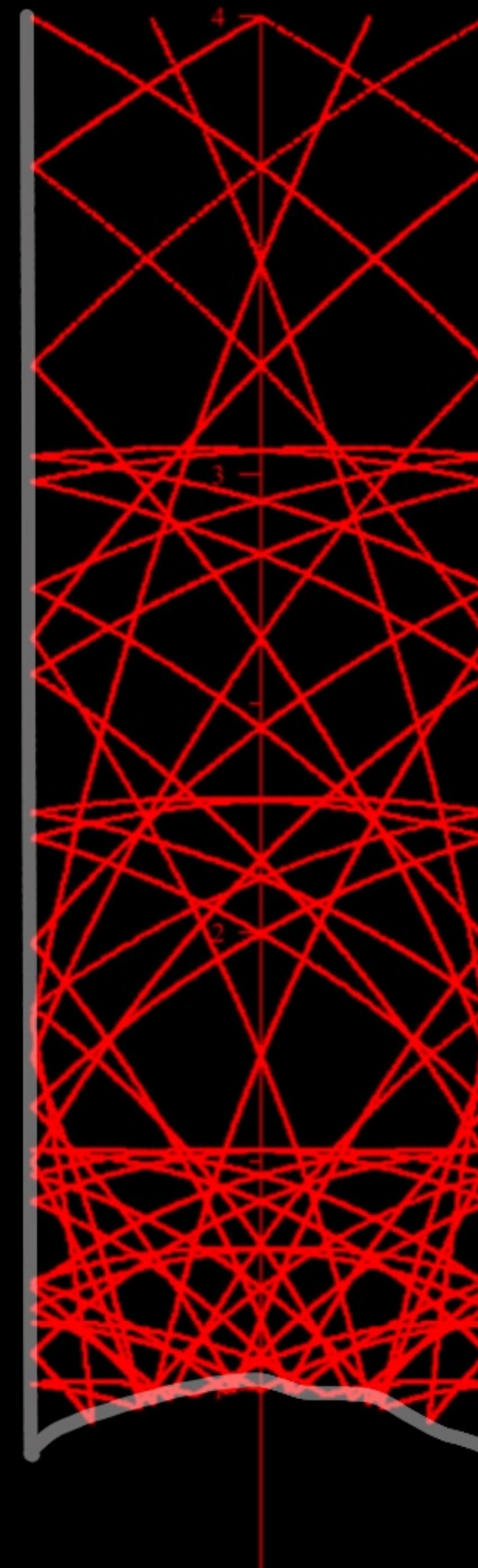
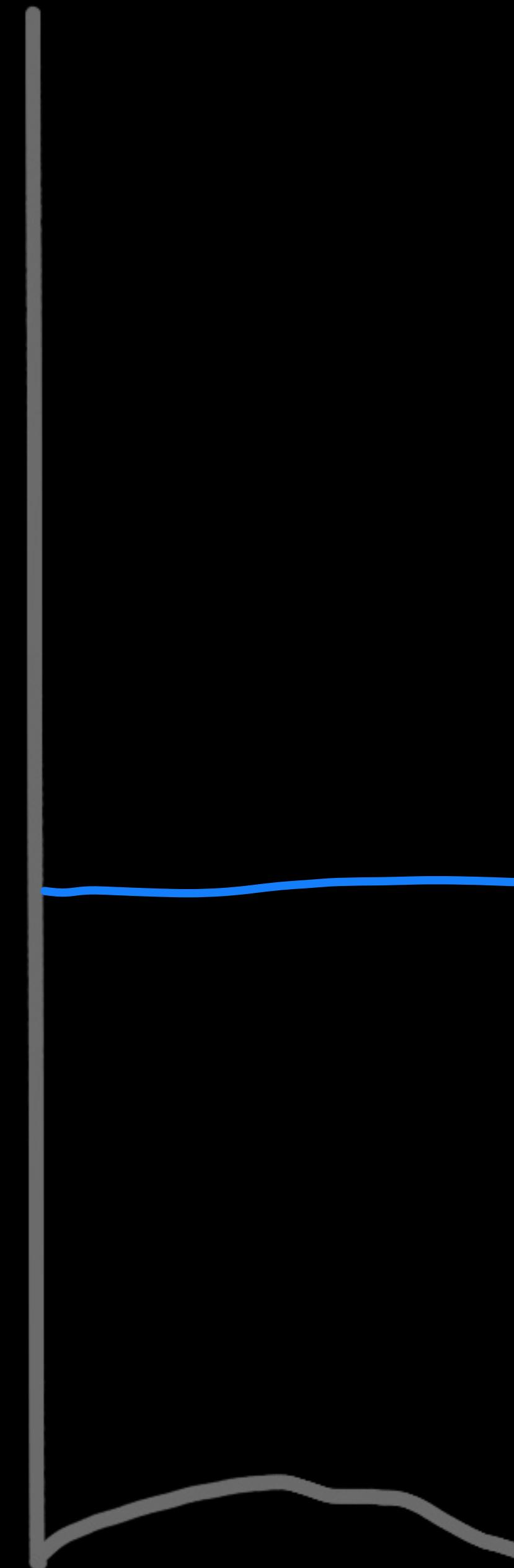


Image from “Distribution of closed geodesics on the modular surface, and Duke’s theorem”
Einsiedler-Lindenstrauss-Michel-Venkatesh

$$SL_2 \mathbb{R} / SL_2 \mathbb{Z}$$

The image of a closed U -orbit projected onto the fundamental domain of the $SL_2 \mathbb{Z}$ action on \mathbb{H} .



Ratner's Measure Classification Theorem

Ratner's Measure Classification Theorem

G : connected Lie group

$\Gamma \subset G$: a lattice

$U \subset G$: a closed subgroup generated by unipotents

$U \curvearrowright G/\Gamma$ on the left.

Ratner's Measure Classification Theorem

G : connected Lie group

$\Gamma \subset G$: a lattice

$U \subset G$: a closed subgroup generated by unipotents

$U \curvearrowright G/\Gamma$ on the left.

$$G = SL_2 \mathbb{R}$$
$$\Gamma = SL_2 \mathbb{Z}$$
$$U = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

Ratner's Measure Classification Theorem

G : connected Lie group

$\Gamma \subset G$: a lattice

$U \subset G$: a closed subgroup generated by unipotents

$U \curvearrowright G/\Gamma$ on the left.

Theorem:

Any ergodic U -invariant probability measure on G/Γ is algebraic (i.e., “volume” on the orbit of a closed subgroup).

$$G = SL_2 \mathbb{R}$$
$$\Gamma = SL_2 \mathbb{Z}$$
$$U = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

Ratner's Measure Classification Theorem

G : connected Lie group

$\Gamma \subset G$: a lattice

$U \subset G$: a closed subgroup generated by unipotents

$U \curvearrowright G/\Gamma$ on the left.

Theorem:

Any ergodic U -invariant probability measure on G/Γ is algebraic (i.e., “volume” on the orbit of a closed subgroup).

$$U = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

Ratner + more work

\implies all orbit closures are the orbits of closed subgroups, i.e., for all $x \in M$, there is a closed subgroup $U \subset F \subset G$ such that

$$\overline{Ux} = Fx.$$

Ratner's Measure Classification Theorem

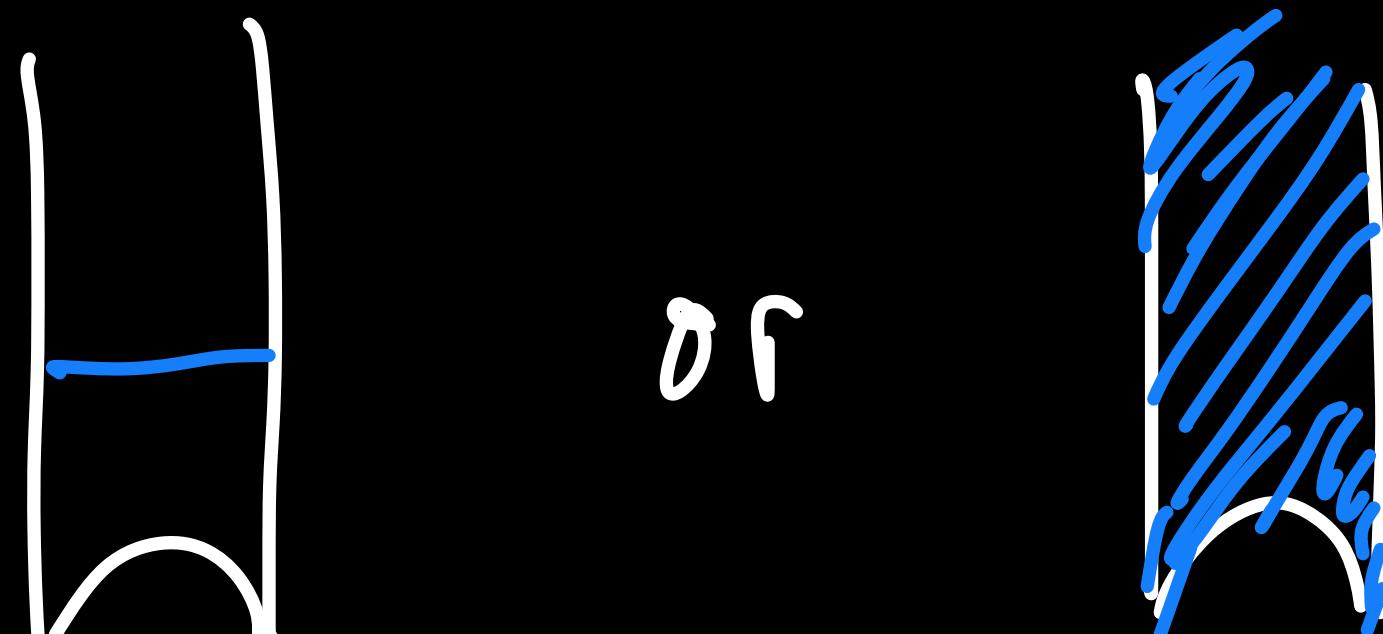
Ratner \Rightarrow
the U orbits of Γ \rightarrow
are either closed
or dense.

$$G = SL_2 \mathbb{R}$$
$$\Gamma = SL_2 \mathbb{Z}$$
$$U = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

Ratner's Measure Classification Theorem

Ratner \Rightarrow
the U orbits of \rightarrow
are either closed
or dense.

$$G = SL_2 \mathbb{R}$$
$$\Gamma = SL_2 \mathbb{Z}$$
$$U = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$



Ratner's Measure Classification Theorem

$$A = \left\{ \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

What if we act by A instead of U ?

$$G = SL_2 \mathbb{R}$$
$$\Gamma = SL_2 \mathbb{Z}$$

$$U = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

Ratner's Measure Classification Theorem

$$A = \left\{ \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

What if we act by A instead of U ?

$$G = SL_2 \mathbb{R}$$
$$\Gamma = SL_2 \mathbb{Z}$$

$$U = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

Ratner doesn't hold— there are fractal orbit closures.

Ratner's Measure Classification Theorem

Margulis used Ratner to prove the Oppenheim Conjecture:

If $n \geq 3$ and $Q(x_1, \dots, x_n) = \sum_{1 \leq i \leq j \leq n} a_{ij}x_i x_j$ is an indefinite non-degenerate quadratic form not proportional to a rational quadratic form, then $Q(\mathbb{Z}^n)$ is dense in \mathbb{R} .

When can you classify measures?

This is a well-studied question. To name a few answers:
Ratner, Benoist-Quint, Eskin-Mirzakhani, Eskin-Lindenstrauss,
Brown-Rodriguez Hertz, Brown-Eskin-Filip-Rodriguez Hertz...

When can you classify measures?

This is a well-studied question. To name a few answers:
Ratner, Benoist-Quint, Eskin-Mirzakhani, Eskin-Lindenstrauss,
Brown-Rodriguez Hertz, Brown-Eskin-Filip-Rodriguez Hertz...

The moral: find extra invariance.

A brief overview of measure rigidity (with lies)

	Assumptions	Conclusion	Setting	Year
Ratner	Unipotent	Algebraic (supported on orbit)	Homogeneous	1980s

A brief overview of measure rigidity (with lies)

	Assumptions	Conclusion	Setting	Year
Ratner	Unipotent	Algebraic (supported on orbit)	Homogeneous	1980s
Benoist-Quint	Zariski dense semi-group, compactly supported	Finitely supported or Haar	Homogeneous	2011

A brief overview of measure rigidity (with lies)

	Assumptions	Conclusion	Setting	Year
Ratner	Unipotent	Algebraic (supported on orbit)	Homogeneous	1980s
Benoist-Quint	Zariski dense semi-group, compactly supported	Finitely supported or Haar	Homogeneous	2011
Eskin-Mirzakhani	Action of 2×2 upper triangle group on translation surfaces	Affine (supported on image of subspace) + stiffness	Teichmuller	2013

A brief overview of measure rigidity (with lies)

	Assumptions	Conclusion	Setting	Year
Ratner	Unipotent	Algebraic (supported on orbit)	Homogeneous	1980s
Benoist-Quint	Zariski dense semi-group, compactly supported	Finitely supported or Haar	Homogeneous	2011
Eskin-Mirzakhani	Action of 2×2 upper triangle group on translation surfaces	Affine (supported on image of subspace) + stiffness	Teichmuller	2013
Brown-Rodriguez Hertz	Surfaces + random + hyperbolic	A trichotomy of possible measures	Smooth	2014

A brief overview of measure rigidity (with lies)

	Assumptions	Conclusion	Setting	Year
Ratner	Unipotent	Algebraic (supported on orbit)	Homogeneous	1980s
Benoist-Quint	Zariski dense semi-group, compactly supported	Finitely supported or Haar	Homogeneous	2011
Eskin-Mirzakhani	Action of 2x2 upper triangle group on translation surfaces	Affine (supported on image of subspace) + stiffness	Teichmuller	2013
Brown-Rodriguez Hertz	Surfaces + random + hyperbolic	A trichotomy of possible measures	Smooth	2014
Brown-Eskin-Filip-Rodriguez Hertz	Don't ask	Very complicated	Smooth (+ other)	2025

A brief overview of measure rigidity (with lies)

	Assumptions	Conclusion	Setting	Year
Ratner	Unipotent	Algebraic (supported on orbit)	Homogeneous	1980s
Benoist-Quint	Zariski dense semi-group, compactly supported	Finitely supported or Haar	Homogeneous	2011
Eskin-Mirzakhani	Action of 2x2 upper triangle group on translation surfaces	Affine (supported on image of subspace) + stiffness	Teichmuller	2013
Brown-Rodriguez Hertz	Surfaces + random + hyperbolic	A trichotomy of possible measures	Smooth	2014
Brown-Eskin-Filip-Rodriguez Hertz	Don't ask	Very complicated	Smooth (+ other)	2025

magic wand

Brown-Eskin-Filip-Rodriguez Hertz

related to talk 2.

A brief overview of measure rigidity (with lies)

	Assumptions	Conclusion	Setting	Year
Ratner	Unipotent	Algebraic (supported on orbit)	Homogeneous	1980s
Benoist-Quint	Zariski dense semi-group, compactly supported	Finitely supported or Haar	Homogeneous	2011
Eskin-Mirzakhani	Action of 2×2 upper triangle group on translation surfaces	Affine (supported on image of subspace) + stiffness	Teichmuller	2013
Brown-Rodriguez Hertz	Surfaces + random + hyperbolic	A trichotomy of possible measures	Smooth	2014
Brown-Eskin-Filip-Rodriguez Hertz	Don't ask	Very complicated	Smooth (+ other)	2025

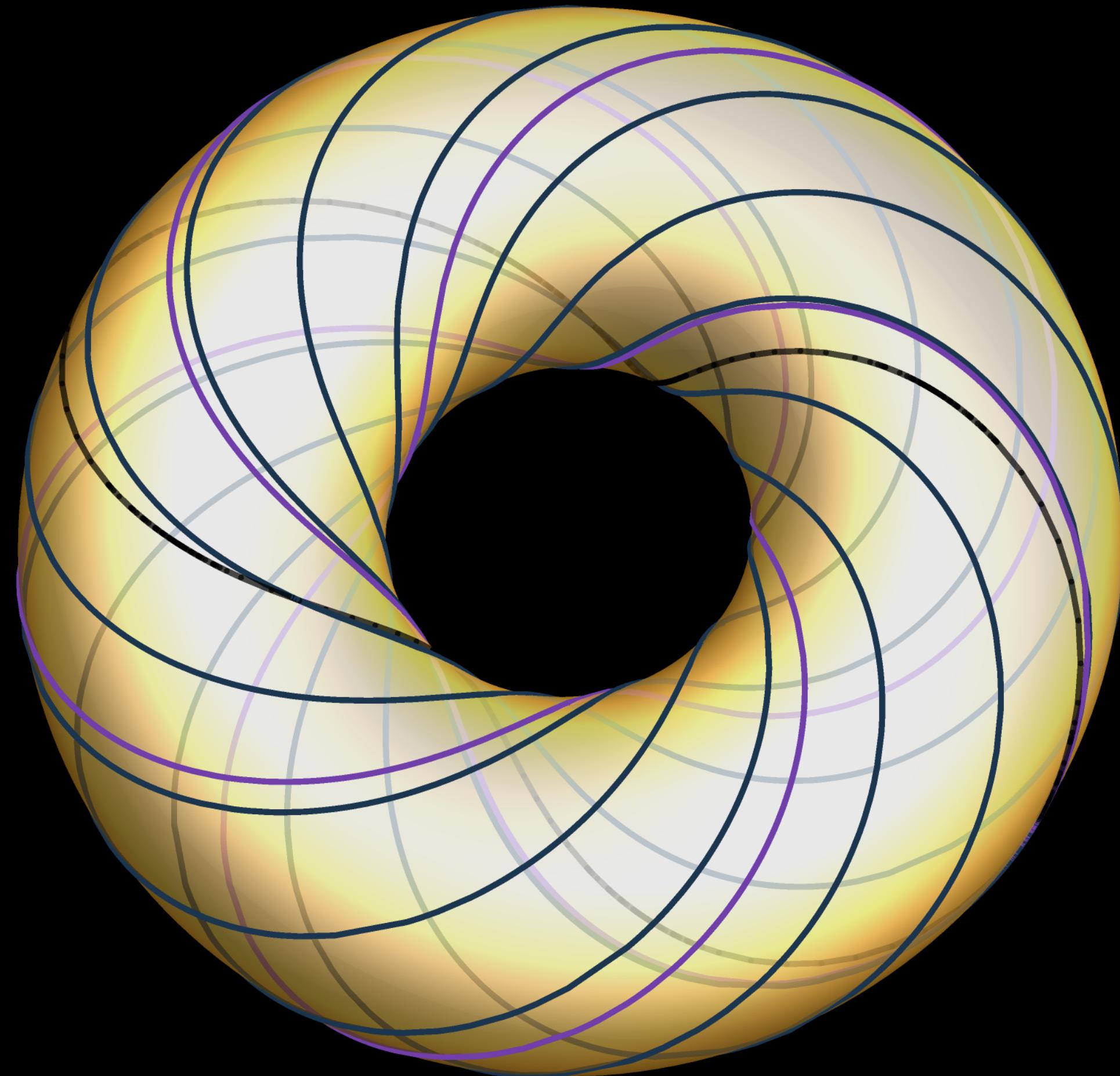
magic
wand

Brown-Eskin-Filip-Rodriguez Hertz

related to talk 2.

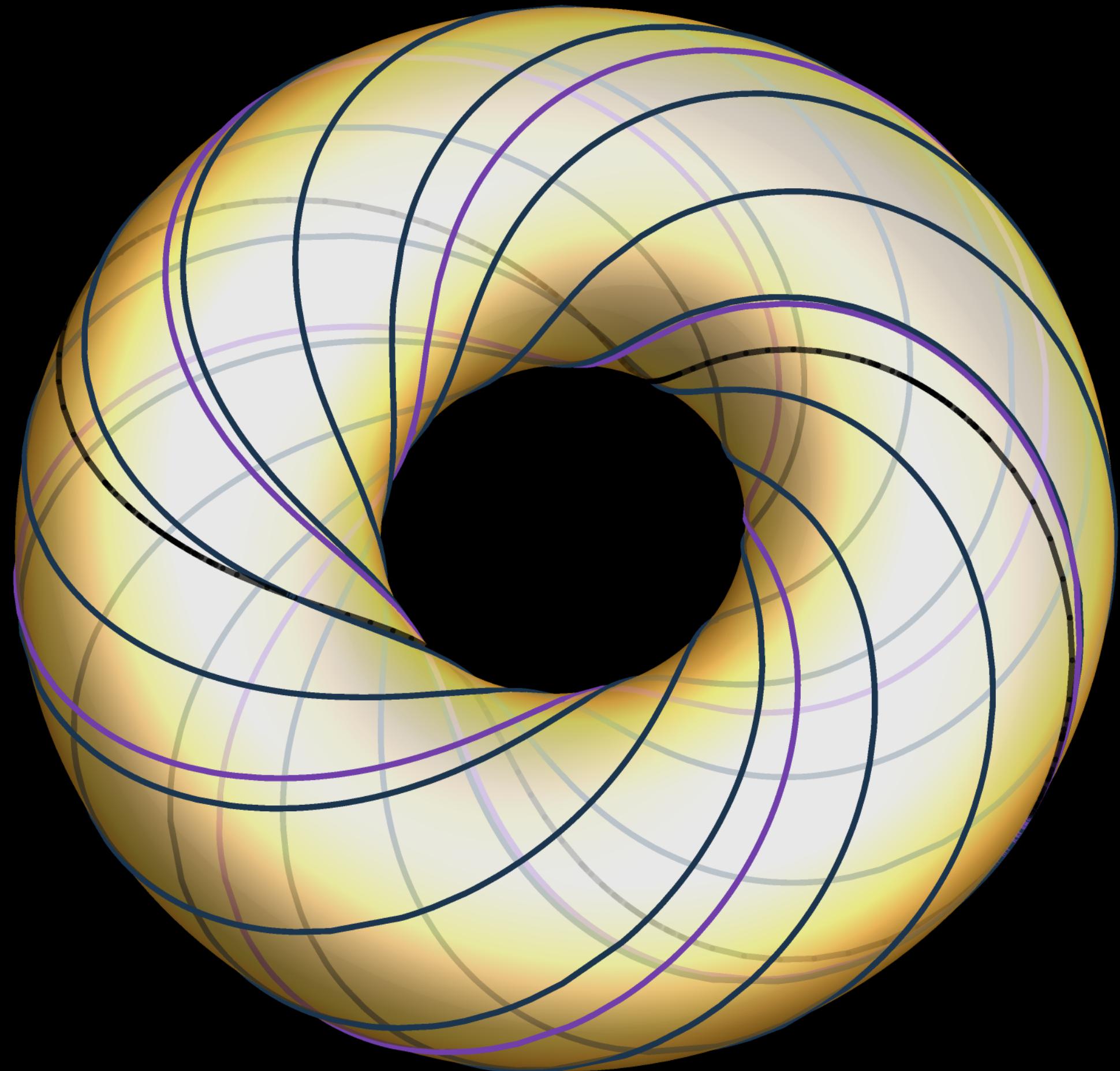
É.S. '23 \Rightarrow exist in a "generic" way on any manifold.

Tools

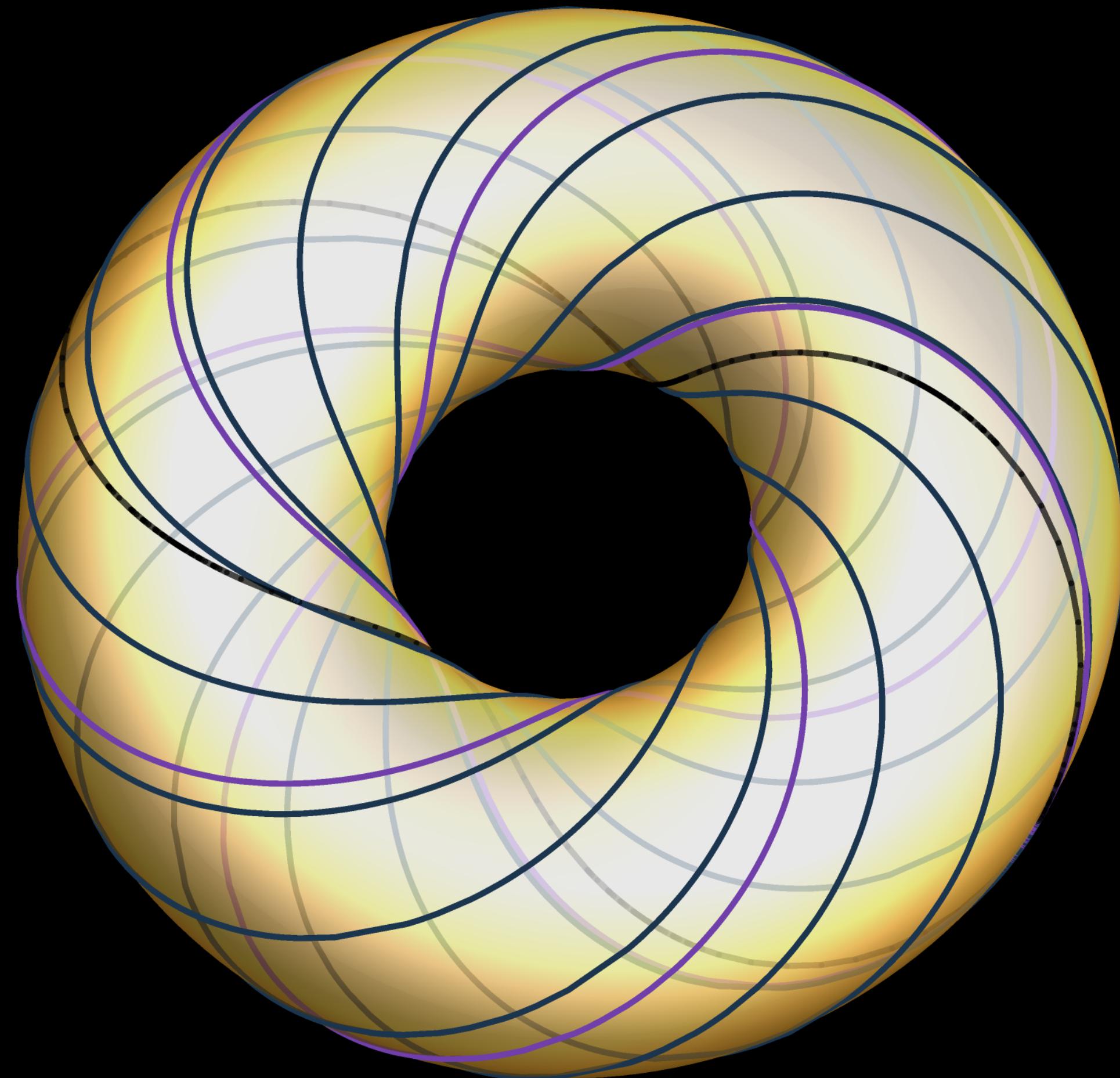


- (Partial) hyperbolicity and consequences
- Pesin theory
- Entropy
- Normal forms
- Exponential drift
- ...

Tools



- (Partial) hyperbolicity and consequences *Lyapunov Exponents*
- Pesin theory
- Entropy
- Normal forms
- Exponential drift
- ...



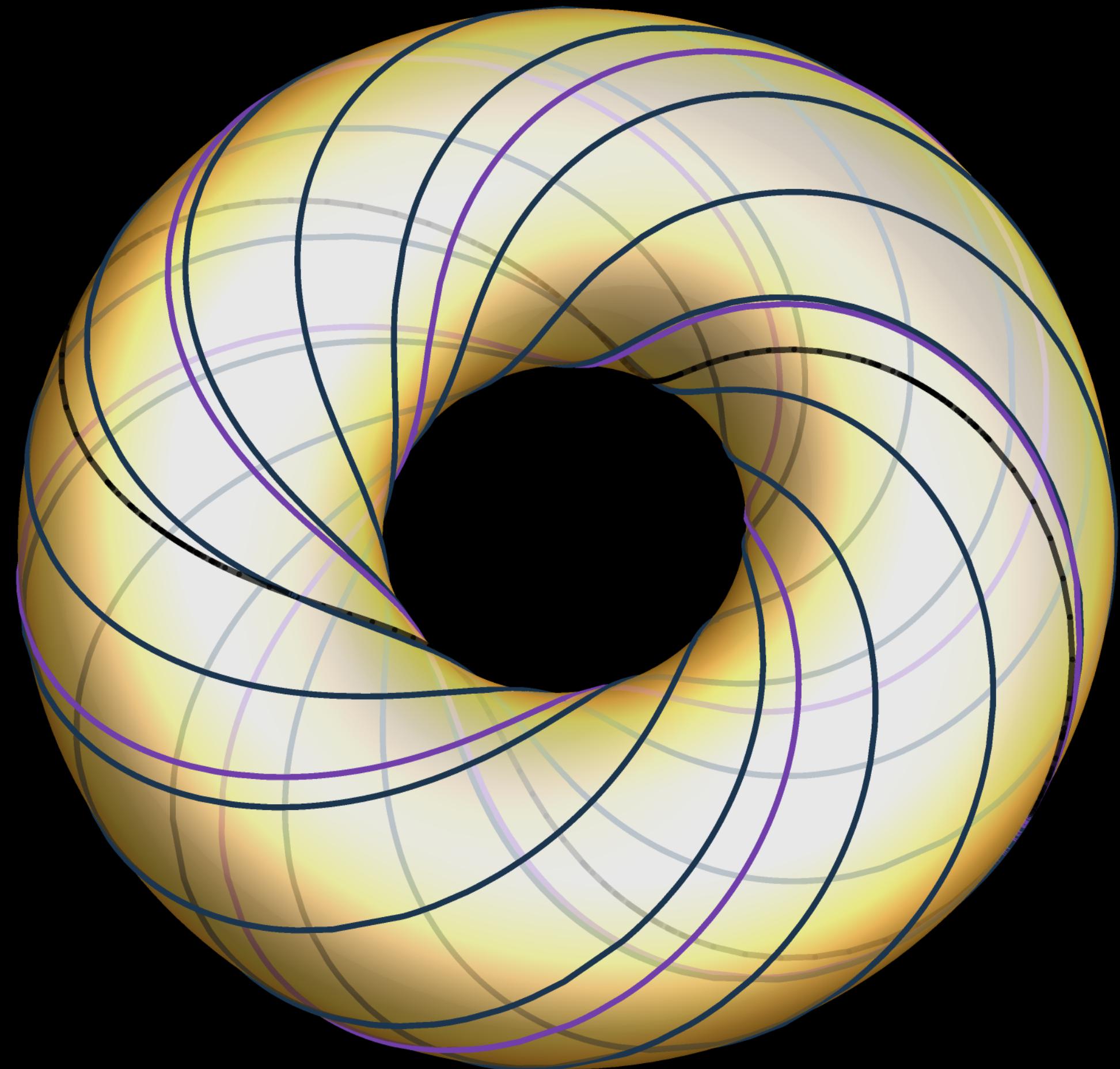
Stable
+ Unstable
manifolds

Tools

- (Partial) hyperbolicity and consequences

Lyapunov
Exponents

- Pesin theory
- Entropy
- Normal forms
- Exponential drift
- ...



Stable
+ Unstable
manifolds

Tools

- (Partial) hyperbolicity and consequences Lyapunov Exponents
- Pesin theory
- Entropy
- Normal forms
- Exponential drift
- ...

recovering
algebraic
niceness
in smooth
dynamics

Tools

- (Partial) hyperbolicity and consequences

\nwarrow Lyapunov
Exponents

- Pesin theory

- Entropy

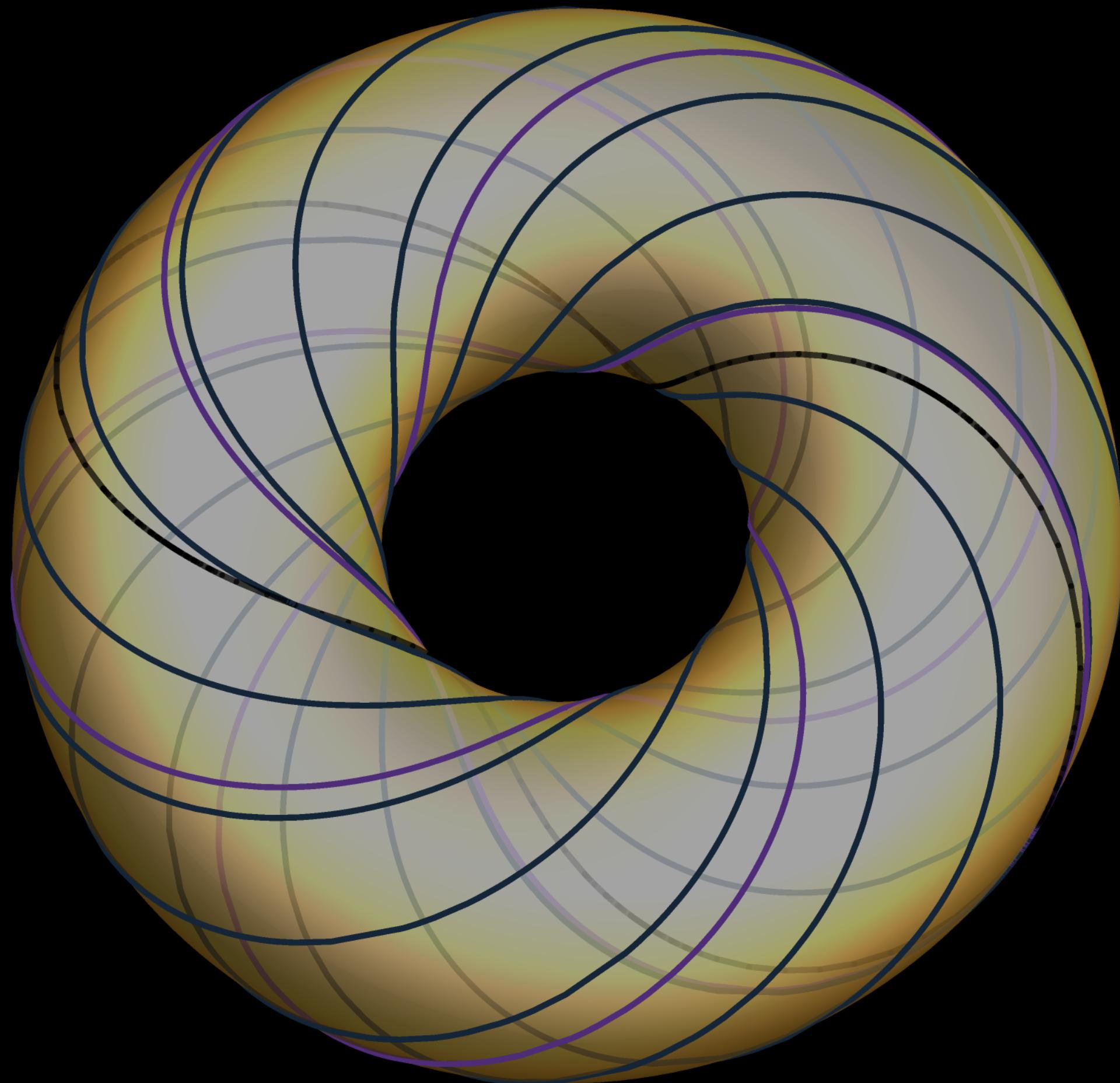
- Normal forms

- Exponential drift

- ...

Stable
+ Unstable
manifolds

recovering
algebraic
niceness
in smooth
dynamics



Next time: using all of this to find physical measures

Thank you!

