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What is measure rigidity?
Statements like:


All non-atomic invariant measures are volume.

All invariant measures are finitely supported.


There is only one invariant measure.
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What does this look like in the quotient? 
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Image from “Distribution of closed geodesics on 

the modular surface, and Duke’s theorem” 
Einsiedler-Lindenstrauss-Michel-Venkatesh
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Ratner + more work

 all orbit closures are the 

orbits of closed subgroups, i.e., 
for all , there is a closed 

subgroup  such that 
.

⟹

x ∈ M
U ⊂ F ⊂ G

Ux = Fx
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G = SL2ℝ
Γ = SL2ℤ

U = {(1 t
0 1) | t ∈ ℝ}

Ratner’s Measure Classification Theorem

What if we act by   instead of ?A U

A = {(et 0
0 e−t) | t ∈ ℝ}

Ratner doesn’t hold— there are fractal orbit closures.



Ratner’s Measure Classification Theorem

Margulis used Ratner to prove the Oppenheim Conjecture: 


If  and  is an indefinite non-degenerate 

quadratic form not proportional to a rational quadratic form, then  is 
dense in .


n ≥ 3 Q(x1, …, xn) = ∑
1≤i≤j≤n

aijxixj

Q(ℤn)
ℝ
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Next time: using all of this to find physical measures 



Thank you!


