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And many more settings:

- homogeneous dynamics (“nice” actions on G/I" for G a Lie group)
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What is measure rigidity?

Statements like:

All non-atomic invariant measures are volume.
All invariant measures are finitely supported.
There is only one invariant measure.
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When can you classify
measures?

This Is a well-studied question. To name a few answers:

Ratner, Benoist-Quint, Eskin-Mirzakhani, Eskin-Lindenstrauss,
Brown-Rodriguez Hertz, Brown-Eskin-Filip-Rodriguez Hertz...
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What does this look like Iin the quotient? ——
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SLR/SL,Z

The image of a closed A-orbit
projected onto the fundamental

domain of the SL,Z action on [H.

Image from “Distribution of closed geodesics on
the modular surface, and Duke’s theorem”
Einsiedler-Lindenstrauss-Michel-Venkatesh
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The image of a closed [J-orbit
projected onto the fundamental

domain of the SL,Z action on [H.
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Ratner’s Measure Classification Theorem

G : connected Lie group

[' C G:alattice | — SLZZ
U C G : a closed subgroup generated by 1 ¢
unipotents = {(O 1) RE=E }

U N G/1 on the left.

Theorem:

Any ergodic U-invariant probability measure

on G/I  is algebraic (i.e., “volume” on the
orbit of a closed subgroup).



Ratner’s Measure Classification Theorem

G : connected Lie group

[' C G:alattice | — SL2Z
U C G : aclosed subgroup generated by 1 ¢
unipotents = {(O 1) | tER}

U N G/1 on the left.
Ratnher + more work

—> all orbit closures are the

Any ergodic U-invariant probability measure  orbits of closed subgroups, i.e.,

S?bﬁ;gfci',%igfﬁbg&p{"'“me on the for all x € M, there is a closed

subgroup U C F C G such that
Ux = Fx.

Theorem:
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What if we act by A instead of U? U = {(1 t) | 1 € R}




Ratner’s Measure Classification Theorem

{ G =35L,R
A=< (€ (L [t € R B

What if we act by A instead of U? U = { ((1) i) | 1 € [R}

Ratner doesn’t hold— there are fractal orbit closures.



Ratner’s Measure Classification Theorem

Margulis used Ratner to prove the Oppenheim Conjecture:

fn>3and Q(xy, ..., x,) = Z a;ix;x; is an indefinite non-degenerate

1<i<j<n
quadratic form not proportional to a rational quadratic form, then Q(Z") is
dense in K.
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Hertz

hyperbolic

possible measures

Assumptions Conclusion Setting Year
Ratner Unipotent Algepraic (su.pported Homogeneous 1980s
on orbit)
zariski dense semi- | w0 <ubported o
Benoist-Quint group, compactly y Hapae Homogeneous 2011
supported
Action of 2x2 upper | Affine (supported on
Eskin-Mirzakhani triangle group on | image of subspace) + Teichmuller 2013
translation surfaces SHESS
Brown-Rodriguez | Surfaces + random + A trichotomy of Smooth 5014
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Rodriguez Hertz
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Hertz hyperbolic possible measures
Brown-Eskin-Filip- Don’t ask Very complicated Smooth (+ other) 2025
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Assumptions Conclusion Setting Year
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Next time: using all of this to find physical measures



Thank you!




