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What is a dispersive PDE?

A PDE is called dispersive if different frequencies travel with different velocities. J

Key consequence: solutions spread out or disperse as time evolves:
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® Energy/Mass is conserved (so blue area stays constant),
® Solution decays pointwise (so height of red curve decreases),

—> solution spreads out.
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What is a dispersive PDE?

A PDE is called dispersive if different frequencies travel with different velocities. )

A typical example is the Schrddinger equation on R x R¢

10w+ Au =0, u(0) = f.
Notation
e Solution u(t,z) : R x RY — C.
e Often suppress the spatial variable = € R? and just write u(t).

® Here 0 is short for a% and A = 2?21 89%], is the Laplacian on R?.
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What is a dispersive PDE?

A PDE is called dispersive if different frequencies travel with different velocities. )

A typical example is the Schrddinger equation on R x R¢
10w+ Au = 0, u(0) = f.

* Take data f(r) = e oscillating at frequency &, € R?, then solution
u(t, z) = et@+téo) o

has velocity &.
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What is a dispersive PDE?

A PDE is called dispersive if different frequencies travel with different velocities. J

A typical example is the Schrddinger equation on R x R¢
10w+ Au = 0, u(0) = f.

* Take data f(r) = e oscillating at frequency &, € R?, then solution
u(t, z) = et@+téo) o

has velocity &.
® |n contrast to transport equations
Ou+v-Vu=0 (all frequencies have same velocity)
and parabolic PDE

-0+ Au =10 (all frequencies decay to zero).
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Norms

Some additional notation:
* For a function f : R — C we take

s = ([ 1f@Pdz)", £l = ess supl (o).

r€R4
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Norms
Some additional notation:
e For a function f : R? — C we take

1

s = ([ 1f@Pdz)”, i = ess supl (o).

r€R4

* Also require a space measure smoothness, here V = (01, ..., 0q4),

1

1l = (1F132 + I9A032) " Wl = IV S e
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Norms

Some additional notation:
e For a function f : R? — C we take

1

s = ([ 1f@Pdz)”, i = ess supl (o).

r€R4

* Also require a space measure smoothness, here V = (01, ..., 0q4),

1

1l = (1F132 + I9A032) " Wl = IV S e

* Given a space-time map u(t,z) : R x R? — C we take

lellzgz = ||tz ,

v Ml = ||llult, )
t £ x L
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The linear problem

Given data f, find a (unique) solution u : R x R? — C such that

10yu+ Au = 0, u(0) = f.
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The linear problem
Given data f, find a (unique) solution u : R x R? — C such that
u(0) = f.

10yu + Au = 0,

Can solve linear problem explicitly!

Assume that f decays, then have the unique global solution

Jz—y|?
/ =T f(y)dy
Rd

ult,e) = (4rit)®

4/20
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Consequences
Solution to linear Schrédinger equation given by
jlz=ul?
e T fy)dy
Rd

ult, ) = (drit)?

5/20
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Consequences
Solution to linear Schrédinger equation given by

ultd) = o [ T Sy

¢ Clearly solution decays pointwise as t — oo. In fact have dispersive bound

_d
[w()l| Lo ey < 8172 [ fl] 2
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Consequences
Solution to linear Schrédinger equation given by

ultd) = o [ T Sy

¢ Clearly solution decays pointwise as t — oo. In fact have dispersive bound

_d
[w()l| Lo ey < 8172 [ fl] 2

® By differentiating in time, and integrating by parts, can also conclude the
conservation of mass and energy

lu@llzz = Ifllezs  [IVu@®lzz = VFL2-

Thus solution disperses as t — oo.
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Issues
Solution to linear Schrédinger equation given by
i \W—Q\Q
e fy)dy
Rd

ult, ) = (drit)?

Not at all obvious that u(t) — f as ¢t — 0!

6/20
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Issues

Solution to linear Schrédinger equation given by
jlz=ul?
/ e f(y)dy
R4

ult, ) = (drit)?

Not at all obvious that u(t) — f as ¢t — 0!
e Convergence in norm (say H' or L?) true.
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Issues
Solution to linear Schrédinger equation given by
jlz=ul?
e T fy)dy
Rd

ult, ) = (drit)?

Not at all obvious that u(t) — f as ¢t — 0!
e Convergence in norm (say H' or L?) true.

® Problem of pointwise convergence, namely
lim u(t,z) = f(z)

t—o0
dates back to Carleson1979. True for smooth data f € H' but can in fact
fail for rough data f € L? Dahlberg-Kenig1982, Bourgain2016 (sharp

regularity required still open question).
6/20
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Issues
Solution to linear Schrédinger equation given by
eyl
f(y)dy

g/eu
2 JRd

® Smooth data can lead to singular solutions
1 8
@

ult, o) = (4rit)

2

|z
IE-1D) ,

w6 2) = it —0)F

® Loss of uniqueness: there exists (smooth) solutions u(t, z) s.t. u = 0 for
t < 0andwu # 0fort > 0! Schrédinger analogue of Tychonoff’s construction

for the heat equation.
Both (1) + (2) occur as examples have no decay as |x| — cc.

Energy can disperse from oo = counteracts dispersive decay.
6/20
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The nonlinear problem

Given data f, find a (unique) solution u : R x R* — C such that

i0u + Au = —|u|?u, u(0) = f.

® Fixed d = 4 as numerology works out nicely. This is known as the focusing
energy critical nonlinear Schrédinger equation (NLS).
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The nonlinear problem

Given data f, find a (unique) solution u : R x R* — C such that

i0u + Au = —|u|?u, u(0) = f.

® Fixed d = 4 as numerology works out nicely. This is known as the focusing
energy critical nonlinear Schrédinger equation (NLS).

¢ Problem heavily studied in all dimensions d > 1
Strichartz1977, Cazenave-Weissler1990, Bourgaini999,
Colliander-Keel-Staffilani-Takaoka-Tao2004, Kenig-Merle2006,
Dodson2019,
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The nonlinear problem

Given data f, find a (unique) solution u : R x R* — C such that

i0u + Au = —|u|?u, u(0) = f.

® Fixed d = 4 as numerology works out nicely. This is known as the focusing
energy critical nonlinear Schrédinger equation (NLS).

¢ Problem heavily studied in all dimensions d > 1
Strichartz1977, Cazenave-Weissler1990, Bourgaini999,
Colliander-Keel-Staffilani-Takaoka-Tao2004, Kenig-Merle2006,
Dodson2019,

Immediate Issue:
In contrast to linear case, no formula for solution!

—> need to use alternative arguments to study dynamics.
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Linear vs Nonlinear behaviour

i0u + Au = —|u|?u, u(0) = f. J

Roughly speaking, the evolution of a nonlinear dispersive PDE is a combination
of three regimes:

@ Linear terms dominate.
® Nonlinear interactions dominate.
® Intermediate (or critical) behaviour.
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Linear terms dominate

i0u + Au = —|u|?u, u(0) = f.

® Solution exists globally in time, and converges to a linear solution at t = co
(scattering).

® Essentially all global bounds satisfied by the free evolution, also hold for the
nonlinear evolution.

® Nonlinear effects are weak, and can only occur for short times.

® Typically this scenario tends to hold for small data, short times, high
regularities, ...
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Nonlinear interactions dominate

i0u + Au = —|u|u, u(0) = f. J

® Solutions can form singularities in finite times (or even instantaneously),
thus even local well-posedness can fail. If conserved quantities prevent
blow-up (i.e. non-focusing nonlinearities), then solution is unstable for short
to medium times.

® Typically this behaviour arises for large data, low regularities, long times,
strong nonlinearities ...
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Nonlinear interactions dominate

i0u + Au = —|u>u,  u(0) = f. )

Assume f € H! satisfies |||x|f|| > < co and assume energy is negative

Encslf] = /Rd %|Vf|2 — i|f|4dx < 0.

Then solution w forms singularity in finite time.
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Nonlinear interactions dominate

i0u + Au = —|u|?u, u(0) = f. J

Assume f € H! satisfies |||x|f|| > < co and assume energy is negative

Encslf] = /Rd %|Vf|2 — }1|f|4d$ < 0.

Then solution w forms singularity in finite time.

Key idea in proof is to compute the second derivative in time of the virial quantity
V) = [ laPlutt.)d
R4

This is negative(!) so V (t) concave = V' (t) must reach zero in finite time.
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Intermediate or critical behaviour

® The linear and nonlinear effects are balanced. This leads to modifications to
the asymptotic behaviour (i.e. log corrections to the expected linear
behaviour) or non-dispersive solitary wave, or soliton like solutions.
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Intermediate or critical behaviour

® The linear and nonlinear effects are balanced. This leads to modifications to
the asymptotic behaviour (i.e. log corrections to the expected linear
behaviour) or non-dispersive solitary wave, or soliton like solutions.

® The KdV equation
Ot + Oppptt +udzu =0
has the (explicit) soliton solutions
u(t,z) = Qx —t),

where Q(z) = isech®(%).

® First observed by Scott Russell in
1834 in a canal in Scotland.
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Intermediate or critical behaviour

i0u + Au = —|u|?u, u(0) = f.

Focusing NLS has similar explicit solutions:

8

Q(z) = 8+ 2P

® The ground state Q (or Aubine-Talenti function Aubin1976, Talentil976)
can be characterised as the optimiser (up to translations and rescalings) of
the Sobolev embedding

l9llza@s)y < CallVallL2®s)-
® Also satisfies the elliptic equation
AQ = —Q3.

e Clearly the solution u(t, ) = Q(x) is far from linear!
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The Small Data Regime

Intuition:
If data ‘small’, we expect solution u to be small, and so |u|*u very small.

—> wu should be close to linear solution (i0; + A)uy, = 0.

What do we mean by small?

A good choice is to use norm

£l 1 (ray = (/R |f(@)]* + \Vf(m)def

Why is this a good choice?

Corresponds to ‘energy’ of solution, plays key role in controlling large time
dynamics in 4d.
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The nonlinear problem: Small data global existence

Theorem (Cazenave-Weissler1990)

There exists € > 0 such that for any data || f|| ;1 (r+) < € there exists a (unique)
solution v € C(R; H!(R%)) to

(10 + A)u = —|u|?u, u(0) = f.
Moreover, there exists linear solutions (i0; + A)u+~, = 0 such that

lim |u(t) — taoo(t)|| 1 ®e) = 0.

t—+oo

* This is a small data result as requires that the data f € H'(R*) satisfies

Hf”Hl(]R4) < €.

* The space C(R; H'(R%)) is the collection of all continuous functions
u(t) : R — HY(RY).
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The nonlinear problem: Small data global existence

Theorem (Cazenave-Weissler1990)

There exists € > 0 such that for any data || f|| ;1 (r+) < € there exists a (unique)
solution v € C(R; H!(R%)) to

(10 + A)u = —|u|?u, u(0) = f.
Moreover, there exists linear solutions (i0; + A)u+~, = 0 such that

lim |u(t) — taoo(t)|| 1 ®e) = 0.

t—+oo

® The final property is called scattering. It states that for large times the
solution () converges to a solution to the linear equation.

—> Linear terms dominate dynamics in the small data case.
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What is a solution?

i0u + Au = —|uf?u, u(0) = f. )

First issue: Data is in H', so at most can expect u to also be H'. What does it
mean for u to be a solution?
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What is a solution?

i0u + Au = —|uf?u, u(0) = f.

First issue: Data is in H', so at most can expect u to also be H'. What does it
mean for « to be a solution?
® Define the Fourier transform

7(&) = Flf1e) = / e f(0)da

R4
and let '~ denote the free propagator

A f = F e M FE) ().
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What is a solution?

i0u + Au = —|uf?u, u(0) = f.

First issue: Data is in H', so at most can expect u to also be H'. What does it
mean for « to be a solution?
® Define the Fourier transform

flo) = 7A@ = [ e sw)s
and let '~ denote the free propagator
A f = F e M F(©)(a).
® Applying Duhamel formula/variation of constants, we can write solution in
the integral form

u(t) = e f —i / e =8 (Ju)?u) (s)ds.
0
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What is a solution?

i0u + Au = —|uf?u, u(0) = f.

First issue: Data is in H', so at most can expect u to also be H'. What does it
mean for « to be a solution?
® Define the Fourier transform

flo) = 7A@ = [ e sw)s
and let '~ denote the free propagator
A f = F e M F(©)(a).
® Applying Duhamel formula/variation of constants, we can write solution in
the integral form

u(t) = e f —i / e =8 (Ju)?u) (s)ds.
0

® So by solution, we really mean a solution to the integral formulation of the
equation.
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Ideas in Proof
Define .
D(u) = A f — z/ ei(t_s)A(|u|2u)(s)ds
0

Goal: Find a nice Banach space X C C(R; H') such that
@ We have the linear bound

1 Fllx < [1F e
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Ideas in Proof
Define

D(u) = A f — i/t ei(t_s)A(|u|2u)(s)ds
0

Goal: Find a nice Banach space X C C(R; H') such that
@ We have the linear bound

1 Fllx < [1F e

® We have the nonlinear bound

| [ et upuonas] < ik
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Ideas in Proof
Define .
D(u) = A f — z/ ei(t_s)A(|u|2u)(s)ds
0

Goal: Find a nice Banach space X c C(R; H') such that
© We have the linear bound

e Fllx < [1F g2

® We have the nonlinear bound

t
H/ ei(t—S)A(|u|2u)(S)d8H S llullk-
o X

Standard fixed point argument (i.e. Picard existence theorem from ODE) then
implies that ® has a (unique) fixed point in a small ball around e®~ f € X.

— get solution to integral formulation of problem
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Linear Estimates

We have

t
itA i(t—s)A
e flleg mzerz S Il || / ili=s F<5>d8hg,,mm5”F”Lg

e Start of a long story connecting problems in harmonic analysis to estimates
for dispersive PDE. Estimates of these type go via the name Strichartz
Estimates. At least on R, optimal result due to Keel-Tao1998.
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Linear Estimates

We have

b
€8 Al sz S 1z || [ €92 P (s)as]
’ 0

S|F
L?,mmLtooLg - || ||Lt%,z

e Start of a long story connecting problems in harmonic analysis to estimates
for dispersive PDE. Estimates of these type go via the name Strichartz
Estimates. At least on R, optimal result due to Keel-Tao1998.

® Above suggests we should take our solution space X to be
lullx = llullgemz + IVullzs -

The above Strichartz estimate then gives

le(w)llx = |

t
e e (RO Y T P (T
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Nonlinear Estimate

Only remains to prove nonlinear estimate
< 2,
~ ||U||L§‘m||uHLf°H1

IV(ulw)l

but this is an easy consequence of Hélder's inequality: if £ = 2 + 1 then

e < | fllzellglle,

£l

together with the Sobolev embedding
£z ey S NV FllLe ®e)-

17/20
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Summary

i0u + Au = —|u|?u, u(0) = f.

* Small data theory in H'! for the nonlinear problem is essentially a
consequence of the linear Strichartz estimate

e fllze, S 1F1lz.
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Summary

i0u + Au = —|u|?u, u(0) = f.

e Small data theory in H! for the nonlinear problem is essentially a
consequence of the linear Strichartz estimate

e fllze, S 1F1lz.

® This estimate can be thought of as another way to capture the dispersive
properties of the evolution, that very conveniently only requires f € L?, as
opposed to the usual dispersive estimate

1”2 fllzee < 117211 £l s
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Summary

i0u + Au = —|u|?u, u(0) = f.

e Small data theory in H! for the nonlinear problem is essentially a
consequence of the linear Strichartz estimate

e fllze, S 1F1lz.

® This estimate can be thought of as another way to capture the dispersive
properties of the evolution, that very conveniently only requires f € L?, as
opposed to the usual dispersive estimate

1”2 fllzee < 117211 £l s

® Essentially the same strategy underlies much of the progress in dispersive
PDE over the past two decades, at least in the small data or linear regime.
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The nonlinear problem II: nonperturbative setting

i0pu + Au = —|u|?u, u(0) = f.

What happens for large data?

Have some hope to control dynamics as the energy

evuslfl = | FIVIP = glf1de

and mass
Mif) = [ IfPda

are both conserved under the nonlinear flow

Ens[u(®)] = Eneslu(0)],  Mlu(®)] = M[u(0)].
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The nonlinear problem II: nonperturbative setting

i0pu + Au = —|u|?u, u(0) = f.

enislfl = [ GIVIP - lfltde

Bad news:

(1) Energy and mass alone not sufficient to control dynamics.
(2) Unlike small data case, nonlinear interactions can dominate!
For instance:
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The nonlinear problem II: nonperturbative setting

i0pu + Au = —|u|?u, u(0) = f.

enislfl = [ GIVIP - lfltde

Bad news:
(1) Energy and mass alone not sufficient to control dynamics.
(2) Unlike small data case, nonlinear interactions can dominate!
For instance:

® For any sufficiently decaying data with negative energy

8NLS[f] < Oa

the solution u(t) forms a singularity in finite time Glassey1977.
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The nonlinear problem II: nonperturbative setting

i0pu + Au = —|u|?u, u(0) = f.

enislfl = [ GIVIP - lfltde

Bad news:

(1) Energy and mass alone not sufficient to control dynamics.
(2) Unlike small data case, nonlinear interactions can dominate!
For instance:

* Define Q(z) = Then AQ = —Q? and hence

8—H3:|2
u(t,z) = Q(x)

is a global (nondispersive!) solution.
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The nonlinear problem IlI: Scattering below ground state

Theorem (Dodson2019)
Assume that f € H*(R*) with

Enwslf] < EnrslQ) and I fll ey < QI Lacwa)-
Then there exists a unique global solution v € C(R; H'(R%)) to
i0su + Au = —|u|?u, u(0) = f.

Moreover u(t) scatters to a linear solution as ¢t — +oo.

Builds on many previous results:

Cazenave-Weissler1990, Bourgainl999,
Colliander-Keel-Staffilani-Takaoka-Tao2004, Kenig-Merle2006,
Killip-Visan2010,
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The nonlinear problem IlI: Scattering below ground state

Theorem (Dodson2019)
Assume that f € H*(R*) with

Encslfl <&nrsl@  and  [|fllLaws) < [QllLawe)-
Then there exists a unique global solution v € C(R; H'(R%)) to

i0su + Au = —|u|?u, u(0) = f.

Moreover u(t) scatters to a linear solution as ¢t — +oo.

The condition || f||z4®s) < ||Q||z4rs) is necessary to ensure global existence!
In fact, if

fradial, Enrs[f] <Enrs[Q), and||fllriws) > QL)

then solution u blows up in finite time Kenig-Mer1e2006.
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The nonlinear problem IlI: Scattering below ground state

Theorem (Dodson2019)
Assume that f € H*(R*) with

Enes[fl <EnrslQ]  and  [|fllraws) < Qe
Then there exists a unique global solution v € C(R; H'(R?)) to

i0u + Au = —|u|?u, u(0) = f.

Moreover u(t) scatters to a linear solution as t — +oc.

The condition || f||4rs) < ||Q|| L4 rs) ensures that the energy is coercive,
namely

Enuslal(®) = [ 5IVuOF = glu(Olde ~ Ju(b).

Although ||u(t)|| s not conserved, the constraint ||u(t)|| L+ < ||@Q| s is preserved
under the nonlinear evolution.
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The nonlinear problem IlI: Scattering below ground state

Theorem (Dodson2019)
Assume that f € H'(R*) with

Encslfl <&nrsl@  and  [|fllLaws) < [QllLawe)-
Then there exists a unique global solution v € C(R; H'(R%)) to

i0su + Au = —|u|?u, u(0) = f.

Moreover u(t) scatters to a linear solution as ¢t — +oo.

The dynamics above the ground state remain an important open problem.

Closely connected to the soliton resolution conjecture which states that all global
in time solutions should eventually resolve into sum of solitons together with a
dispersive error.
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