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What is a dispersive PDE?

A PDE is called dispersive if different frequencies travel with different velocities.

Key consequence: solutions spread out or disperse as time evolves:

I
s t s

tri to

key features blue area essentially stays constant

height decays

support spreads out

• Energy/Mass is conserved (so blue area stays constant),
• Solution decays pointwise (so height of red curve decreases),

=⇒ solution spreads out.

A typical example is the Schrödinger equation on R× Rd

i∂tu+∆u = 0, u(0) = f.
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What is a dispersive PDE?

A PDE is called dispersive if different frequencies travel with different velocities.

A typical example is the Schrödinger equation on R× Rd

i∂tu+∆u = 0, u(0) = f.

Notation
• Solution u(t, x) : R× Rd → C.
• Often suppress the spatial variable x ∈ Rd and just write u(t).

• Here ∂t is short for ∂
∂t

and ∆ =
∑d

j=1 ∂
2
xj

is the Laplacian on Rd.
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What is a dispersive PDE?

A PDE is called dispersive if different frequencies travel with different velocities.

A typical example is the Schrödinger equation on R× Rd

i∂tu+∆u = 0, u(0) = f.

• Take data f(x) = eix·ξ0 oscillating at frequency ξ0 ∈ Rd, then solution

u(t, x) = ei(x+tξ0)·ξ0

has velocity ξ0.

• In contrast to transport equations

∂tu+ v · ∇u = 0 (all frequencies have same velocity)

and parabolic PDE

−∂tu+∆u = 0 (all frequencies decay to zero).
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Norms
Some additional notation:
• For a function f : Rd → C we take

∥f∥Lp =
(∫

Rd

|f(x)|pdx
) 1

p

, ∥f∥L∞ = ess sup
x∈Rd

|f(x)|.

• Also require a space measure smoothness, here ∇ = (∂1, . . . , ∂d),

∥f∥H1 =
(
∥f∥2L2 + ∥∇f∥2L2

) 1
2

, ∥f∥Ḣ1 = ∥∇f∥L2 .

• Given a space-time map u(t, x) : R× Rd → C we take

∥u∥Lq
tL

r
x
=

∥∥∥∥u(t, x)∥Lr
x

∥∥∥
Lq

t

, ∥u∥L∞
t H1

x
=

∥∥∥∥u(t, x)∥H1
x

∥∥∥
L∞

t

.
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The linear problem

Given data f , find a (unique) solution u : R× Rd → C such that

i∂tu+∆u = 0, u(0) = f.
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The linear problem

Given data f , find a (unique) solution u : R× Rd → C such that

i∂tu+∆u = 0, u(0) = f.

Can solve linear problem explicitly!

Assume that f decays, then have the unique global solution

u(t, x) =
1

(4πit)
d
2

∫
Rd

ei
|x−y|2

4t f(y)dy.
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Consequences

Solution to linear Schrödinger equation given by

u(t, x) =
1

(4πit)
d
2

∫
Rd

ei
|x−y|2

4t f(y)dy

• Clearly solution decays pointwise as t → ∞. In fact have dispersive bound

∥u(t)∥L∞
x (Rd) ⩽ |t|− d

2 ∥f∥L1 .

• By differentiating in time, and integrating by parts, can also conclude the
conservation of mass and energy

∥u(t)∥L2
x
= ∥f∥L2 , ∥∇u(t)∥L2

x
= ∥∇f∥L2 .
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Consequences

Solution to linear Schrödinger equation given by

u(t, x) =
1

(4πit)
d
2

∫
Rd

ei
|x−y|2

4t f(y)dy

• Clearly solution decays pointwise as t → ∞. In fact have dispersive bound

∥u(t)∥L∞
x (Rd) ⩽ |t|− d

2 ∥f∥L1 .

• By differentiating in time, and integrating by parts, can also conclude the
conservation of mass and energy

∥u(t)∥L2
x
= ∥f∥L2 , ∥∇u(t)∥L2

x
= ∥∇f∥L2 .

Thus solution disperses as t → ∞.
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Issues

Solution to linear Schrödinger equation given by

u(t, x) =
1

(4πit)
d
2

∫
Rd

ei
|x−y|2

4t f(y)dy

Not at all obvious that u(t) → f as t → 0!

• Convergence in norm (say H1 or L2) true.
• Problem of pointwise convergence, namely

lim
t→∞

u(t, x) = f(x)

dates back to Carleson1979. True for smooth data f ∈ H1 but can in fact
fail for rough data f ∈ L2 Dahlberg-Kenig1982, Bourgain2016 (sharp
regularity required still open question).
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Issues

Solution to linear Schrödinger equation given by

u(t, x) =
1

(4πit)
d
2

∫
Rd

ei
|x−y|2

4t f(y)dy

• Smooth data can lead to singular solutions

u(t, x) =
1

(4πi(t− 1))
d
2

ei
|x|2

4(t−1) .

• Loss of uniqueness: there exists (smooth) solutions u(t, x) s.t. u = 0 for
t ⩽ 0 and u ̸= 0 for t > 0! Schrödinger analogue of Tychonoff’s construction
for the heat equation.

Both (1) + (2) occur as examples have no decay as |x| → ∞.

Energy can disperse from ∞ =⇒ counteracts dispersive decay.
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The nonlinear problem

Given data f , find a (unique) solution u : R× R4 → C such that

i∂tu+∆u = −|u|2u, u(0) = f.

• Fixed d = 4 as numerology works out nicely. This is known as the focusing
energy critical nonlinear Schrödinger equation (NLS).

• Problem heavily studied in all dimensions d ⩾ 1
Strichartz1977, Cazenave-Weissler1990, Bourgain1999,

Colliander-Keel-Staffilani-Takaoka-Tao2004, Kenig-Merle2006,

Dodson2019, ...

Timothy Candy – Harmonic Analysis and Dispersive PDE 7 / 20



The nonlinear problem

Given data f , find a (unique) solution u : R× R4 → C such that

i∂tu+∆u = −|u|2u, u(0) = f.

• Fixed d = 4 as numerology works out nicely. This is known as the focusing
energy critical nonlinear Schrödinger equation (NLS).

• Problem heavily studied in all dimensions d ⩾ 1
Strichartz1977, Cazenave-Weissler1990, Bourgain1999,

Colliander-Keel-Staffilani-Takaoka-Tao2004, Kenig-Merle2006,

Dodson2019, ...

Timothy Candy – Harmonic Analysis and Dispersive PDE 7 / 20



The nonlinear problem

Given data f , find a (unique) solution u : R× R4 → C such that

i∂tu+∆u = −|u|2u, u(0) = f.

• Fixed d = 4 as numerology works out nicely. This is known as the focusing
energy critical nonlinear Schrödinger equation (NLS).

• Problem heavily studied in all dimensions d ⩾ 1
Strichartz1977, Cazenave-Weissler1990, Bourgain1999,

Colliander-Keel-Staffilani-Takaoka-Tao2004, Kenig-Merle2006,

Dodson2019, ...

Immediate Issue:
In contrast to linear case, no formula for solution!

=⇒ need to use alternative arguments to study dynamics.
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Linear vs Nonlinear behaviour

i∂tu+∆u = −|u|2u, u(0) = f.

Roughly speaking, the evolution of a nonlinear dispersive PDE is a combination
of three regimes:

1 Linear terms dominate.

2 Nonlinear interactions dominate.

3 Intermediate (or critical) behaviour.
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Linear terms dominate

i∂tu+∆u = −|u|2u, u(0) = f.

• Solution exists globally in time, and converges to a linear solution at t = ∞
(scattering).

• Essentially all global bounds satisfied by the free evolution, also hold for the
nonlinear evolution.

• Nonlinear effects are weak, and can only occur for short times.
• Typically this scenario tends to hold for small data, short times, high

regularities, ...
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Nonlinear interactions dominate

i∂tu+∆u = −|u|2u, u(0) = f.

• Solutions can form singularities in finite times (or even instantaneously),
thus even local well-posedness can fail. If conserved quantities prevent
blow-up (i.e. non-focusing nonlinearities), then solution is unstable for short
to medium times.

• Typically this behaviour arises for large data, low regularities, long times,
strong nonlinearities ...
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Nonlinear interactions dominate

i∂tu+∆u = −|u|2u, u(0) = f.

Theorem (Glassey1977)
Assume f ∈ H1 satisfies ∥|x|f∥L2 < ∞ and assume energy is negative

ENLS [f ] =

∫
Rd

1

2
|∇f |2 − 1

4
|f |4dx < 0.

Then solution u forms singularity in finite time.
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Nonlinear interactions dominate

i∂tu+∆u = −|u|2u, u(0) = f.

Theorem (Glassey1977)
Assume f ∈ H1 satisfies ∥|x|f∥L2 < ∞ and assume energy is negative

ENLS [f ] =

∫
Rd

1

2
|∇f |2 − 1

4
|f |4dx < 0.

Then solution u forms singularity in finite time.

Key idea in proof is to compute the second derivative in time of the virial quantity

V (t) =

∫
R4

|x|2|u(t, x)|2dx.

This is negative(!) so V (t) concave ⇒ V (t) must reach zero in finite time.
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Intermediate or critical behaviour

• The linear and nonlinear effects are balanced. This leads to modifications to
the asymptotic behaviour (i.e. log corrections to the expected linear
behaviour) or non-dispersive solitary wave, or soliton like solutions.
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Intermediate or critical behaviour
• The linear and nonlinear effects are balanced. This leads to modifications to

the asymptotic behaviour (i.e. log corrections to the expected linear
behaviour) or non-dispersive solitary wave, or soliton like solutions.

• The KdV equation

∂tu+ ∂xxxu+ u∂xu = 0

has the (explicit) soliton solutions

u(t, x) = Q(x− t),

where Q(x) = 1
2sech2(x2 ).

• First observed by Scott Russell in
1834 in a canal in Scotland.
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Intermediate or critical behaviour

i∂tu+∆u = −|u|2u, u(0) = f.

Focusing NLS has similar explicit solutions:

Q(x) =
8

8 + |x|2

• The ground state Q (or Aubine-Talenti function Aubin1976, Talenti1976)
can be characterised as the optimiser (up to translations and rescalings) of
the Sobolev embedding

∥g∥L4(R4) ⩽ Cd∥∇g∥L2(R4).

• Also satisfies the elliptic equation

∆Q = −Q3.

• Clearly the solution u(t, x) = Q(x) is far from linear!
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The Small Data Regime
Intuition:
If data ‘small’, we expect solution u to be small, and so |u|2u very small.

=⇒ u should be close to linear solution (i∂t +∆)uL = 0.

What do we mean by small?

A good choice is to use norm

∥f∥H1(Rd) =
(∫

Rd

|f(x)|2 + |∇f(x)|2dx
) 1

2

Why is this a good choice?

Corresponds to ‘energy’ of solution, plays key role in controlling large time
dynamics in 4d.
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The nonlinear problem: Small data global existence

Theorem (Cazenave-Weissler1990)
There exists ϵ > 0 such that for any data ∥f∥H1(R4) < ϵ there exists a (unique)
solution u ∈ C(R;H1(R4)) to

(i∂t +∆)u = −|u|2u, u(0) = f.

Moreover, there exists linear solutions (i∂t +∆)u±∞ = 0 such that

lim
t→±∞

∥u(t)− u±∞(t)∥H1(R4) = 0.

• This is a small data result as requires that the data f ∈ H1(R4) satisfies

∥f∥H1(R4) < ϵ.

• The space C(R;H1(R4)) is the collection of all continuous functions
u(t) : R → H1(R4).
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The nonlinear problem: Small data global existence

Theorem (Cazenave-Weissler1990)
There exists ϵ > 0 such that for any data ∥f∥H1(R4) < ϵ there exists a (unique)
solution u ∈ C(R;H1(R4)) to

(i∂t +∆)u = −|u|2u, u(0) = f.

Moreover, there exists linear solutions (i∂t +∆)u±∞ = 0 such that

lim
t→±∞

∥u(t)− u±∞(t)∥H1(R4) = 0.

• The final property is called scattering. It states that for large times the
solution u(t) converges to a solution to the linear equation.

=⇒ Linear terms dominate dynamics in the small data case.
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What is a solution?

i∂tu+∆u = −|u|2u, u(0) = f.

First issue: Data is in H1, so at most can expect u to also be H1. What does it
mean for u to be a solution?

• Define the Fourier transform

f̂(ξ) = F [f ](ξ) =

∫
R4

e−ix·ξf(x)dx

and let eit∆ denote the free propagator

eit∆f = F−1[e−it|ξ|2 f̂(ξ)](x).

• Applying Duhamel formula/variation of constants, we can write solution in
the integral form

u(t) = eit∆f − i

∫ t

0

ei(t−s)∆(|u|2u)(s)ds.

• So by solution, we really mean a solution to the integral formulation of the
equation.
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Ideas in Proof
Define

Φ(u) = eit∆f − i

∫ t

0

ei(t−s)∆(|u|2u)(s)ds

Goal: Find a nice Banach space X ⊂ C(R;H1) such that

1 We have the linear bound

∥eit∆f∥X ≲ ∥f∥H1 .

2 We have the nonlinear bound∥∥∥∫ t

0

ei(t−s)∆(|u|2u)(s)ds
∥∥∥
X

≲ ∥u∥3X .
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Ideas in Proof
Define

Φ(u) = eit∆f − i

∫ t

0

ei(t−s)∆(|u|2u)(s)ds

Goal: Find a nice Banach space X ⊂ C(R;H1) such that
1 We have the linear bound

∥eit∆f∥X ≲ ∥f∥H1 .

2 We have the nonlinear bound∥∥∥∫ t

0

ei(t−s)∆(|u|2u)(s)ds
∥∥∥
X

≲ ∥u∥3X .

Standard fixed point argument (i.e. Picard existence theorem from ODE) then
implies that Φ has a (unique) fixed point in a small ball around eit∆f ∈ X.

=⇒ get solution to integral formulation of problem
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Linear Estimates

Theorem (Strichartz1977)
We have

∥eit∆f∥L3
t,x∩L∞

t L2
x
≲ ∥f∥L2 ,

∥∥∥∫ t

0

ei(t−s)∆F (s)ds
∥∥∥
L3

t,x∩L∞
t L2

x

≲ ∥F∥
L

3
2
t,x

.

• Start of a long story connecting problems in harmonic analysis to estimates
for dispersive PDE. Estimates of these type go via the name Strichartz
Estimates. At least on Rn, optimal result due to Keel-Tao1998.

• Above suggests we should take our solution space X to be

∥u∥X = ∥u∥L∞
t H1

x
+ ∥∇u∥L3

t,x
.

The above Strichartz estimate then gives

∥Φ(u)∥X =
∥∥∥eit∆f−i

∫ t

0

ei(t−s)∆(|u|2u)(s)ds
∥∥∥
X

≲ ∥f∥H1+∥∇(|u|2u)∥
L

3
2
t,x

.
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Nonlinear Estimate
Only remains to prove nonlinear estimate

∥∇(|u|2u)∥
L

3
2
x

≲ ∥u∥2L3
t,x

∥u∥L∞
t H1

but this is an easy consequence of Hölder’s inequality: if 1
r = 1

a + 1
b then

∥fg∥Lr ⩽ ∥f∥La∥g∥Lb ,

together with the Sobolev embedding

∥f∥L12
x (R4) ≲ ∥∇f∥L3

x(R4).
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Summary

i∂tu+∆u = −|u|2u, u(0) = f.

• Small data theory in H1 for the nonlinear problem is essentially a
consequence of the linear Strichartz estimate

∥eit∆f∥L3
t,x

≲ ∥f∥L2 .

• This estimate can be thought of as another way to capture the dispersive
properties of the evolution, that very conveniently only requires f ∈ L2, as
opposed to the usual dispersive estimate

∥eit∆f∥L∞
x

≲ |t|−2∥f∥L1
x
.

• Essentially the same strategy underlies much of the progress in dispersive
PDE over the past two decades, at least in the small data or linear regime.
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The nonlinear problem II: nonperturbative setting

i∂tu+∆u = −|u|2u, u(0) = f.

What happens for large data?

Have some hope to control dynamics as the energy

ENLS [f ] =

∫
R4

1

2
|∇f |2 − 1

4
|f |4dx

and mass

M[f ] =

∫
R4

|f |2dx

are both conserved under the nonlinear flow

ENLS [u(t)] = ENLS [u(0)], M[u(t)] = M[u(0)].
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The nonlinear problem II: nonperturbative setting

i∂tu+∆u = −|u|2u, u(0) = f.

ENLS [f ] =

∫
R4

1

2
|∇f |2 − 1

4
|f |4dx

Bad news:

(1) Energy and mass alone not sufficient to control dynamics.

(2) Unlike small data case, nonlinear interactions can dominate!

For instance:
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i∂tu+∆u = −|u|2u, u(0) = f.

ENLS [f ] =

∫
R4

1

2
|∇f |2 − 1

4
|f |4dx

Bad news:

(1) Energy and mass alone not sufficient to control dynamics.

(2) Unlike small data case, nonlinear interactions can dominate!

For instance:
• For any sufficiently decaying data with negative energy

ENLS [f ] < 0,

the solution u(t) forms a singularity in finite time Glassey1977.

Timothy Candy – Harmonic Analysis and Dispersive PDE 19 / 20



The nonlinear problem II: nonperturbative setting

i∂tu+∆u = −|u|2u, u(0) = f.

ENLS [f ] =

∫
R4

1

2
|∇f |2 − 1

4
|f |4dx

Bad news:

(1) Energy and mass alone not sufficient to control dynamics.

(2) Unlike small data case, nonlinear interactions can dominate!

For instance:
• Define Q(x) = 8

8+|x|2 . Then ∆Q = −Q3 and hence

u(t, x) = Q(x)

is a global (nondispersive!) solution.
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The nonlinear problem II: Scattering below ground state

Theorem (Dodson2019)
Assume that f ∈ H1(R4) with

ENLS [f ] < ENLS [Q] and ∥f∥L4(R4) < ∥Q∥L4(R4).

Then there exists a unique global solution u ∈ C(R;H1(Rd)) to

i∂tu+∆u = −|u|2u, u(0) = f.

Moreover u(t) scatters to a linear solution as t → ±∞.

Builds on many previous results:
Cazenave-Weissler1990, Bourgain1999,

Colliander-Keel-Staffilani-Takaoka-Tao2004, Kenig-Merle2006,

Killip-Visan2010, ...
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Assume that f ∈ H1(R4) with

ENLS [f ] < ENLS [Q] and ∥f∥L4(R4) < ∥Q∥L4(R4).

Then there exists a unique global solution u ∈ C(R;H1(Rd)) to

i∂tu+∆u = −|u|2u, u(0) = f.

Moreover u(t) scatters to a linear solution as t → ±∞.

The condition ∥f∥L4(R4) < ∥Q∥L4(R4) is necessary to ensure global existence!
In fact, if

f radial, ENLS [f ] < ENLS [Q], and ∥f∥L4(R4) > ∥Q∥L4(R4)

then solution u blows up in finite time Kenig-Merle2006.
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The nonlinear problem II: Scattering below ground state

Theorem (Dodson2019)
Assume that f ∈ H1(R4) with

ENLS [f ] < ENLS [Q] and ∥f∥L4(R4) < ∥Q∥L4(R4).

Then there exists a unique global solution u ∈ C(R;H1(Rd)) to

i∂tu+∆u = −|u|2u, u(0) = f.

Moreover u(t) scatters to a linear solution as t → ±∞.

The condition ∥f∥L4(R4) < ∥Q∥L4(R4) ensures that the energy is coercive,
namely

ENLS [u](t) =

∫
R4

1

2
|∇u(t)|2 − 1

4
|u(t)|4dx ≈ ∥u(t)∥2

Ḣ1 .

Although ∥u(t)∥L4 not conserved, the constraint ∥u(t)∥L4 < ∥Q∥L4 is preserved
under the nonlinear evolution.
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The nonlinear problem II: Scattering below ground state

Theorem (Dodson2019)
Assume that f ∈ H1(R4) with

ENLS [f ] < ENLS [Q] and ∥f∥L4(R4) < ∥Q∥L4(R4).

Then there exists a unique global solution u ∈ C(R;H1(Rd)) to

i∂tu+∆u = −|u|2u, u(0) = f.

Moreover u(t) scatters to a linear solution as t → ±∞.

The dynamics above the ground state remain an important open problem.

Closely connected to the soliton resolution conjecture which states that all global
in time solutions should eventually resolve into sum of solitons together with a
dispersive error.
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