

Harmonic Analysis and Dispersive PDE

Part I

Timothy Candy

University of Otago

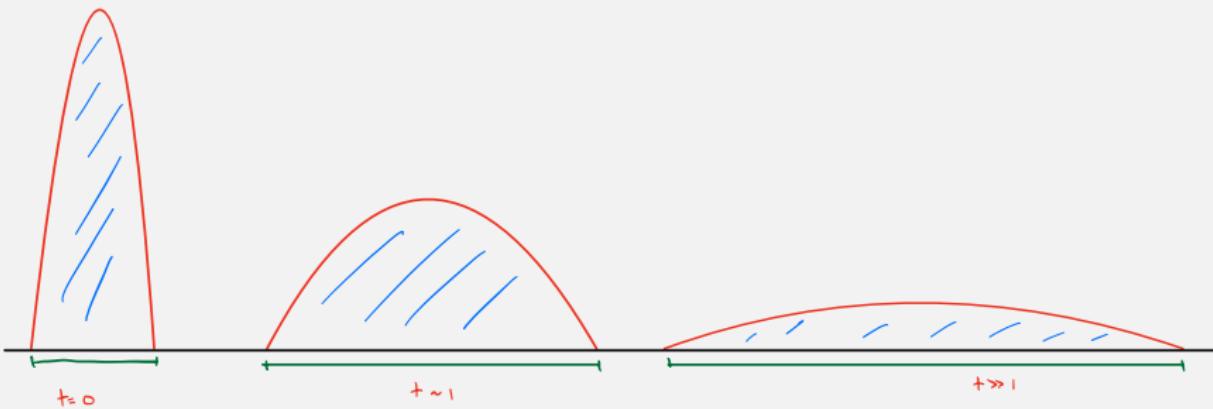
University
of Otago
ÖTĀKOU WHAKAIHU WAKA

Department of
Mathematics and Statistics

What is a dispersive PDE?

A PDE is called *dispersive* if different frequencies travel with different velocities.

Key consequence: solutions **spread out** or **disperse** as time evolves:



- Energy/Mass is conserved (so blue area stays constant),
- Solution decays pointwise (so height of red curve decreases),
 \implies solution spreads out.

What is a dispersive PDE?

A PDE is called *dispersive* if different frequencies travel with different velocities.

A typical example is the **Schrödinger equation** on $\mathbb{R} \times \mathbb{R}^d$

$$i\partial_t u + \Delta u = 0, \quad u(0) = f.$$

Notation

- Solution $u(t, x) : \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{C}$.
- Often suppress the spatial variable $x \in \mathbb{R}^d$ and just write $u(t)$.
- Here ∂_t is short for $\frac{\partial}{\partial_t}$ and $\Delta = \sum_{j=1}^d \partial_{x_j}^2$ is the Laplacian on \mathbb{R}^d .

What is a dispersive PDE?

A PDE is called *dispersive* if different frequencies travel with different velocities.

A typical example is the **Schrödinger equation** on $\mathbb{R} \times \mathbb{R}^d$

$$i\partial_t u + \Delta u = 0, \quad u(0) = f.$$

- Take data $f(x) = e^{ix \cdot \xi_0}$ oscillating at frequency $\xi_0 \in \mathbb{R}^d$, then solution

$$u(t, x) = e^{i(x + t\xi_0) \cdot \xi_0}$$

has velocity ξ_0 .

What is a dispersive PDE?

A PDE is called *dispersive* if different frequencies travel with different velocities.

A typical example is the **Schrödinger equation** on $\mathbb{R} \times \mathbb{R}^d$

$$i\partial_t u + \Delta u = 0, \quad u(0) = f.$$

- Take data $f(x) = e^{ix \cdot \xi_0}$ oscillating at frequency $\xi_0 \in \mathbb{R}^d$, then solution

$$u(t, x) = e^{i(x+t\xi_0) \cdot \xi_0}$$

has velocity ξ_0 .

- In contrast to transport equations

$$\partial_t u + v \cdot \nabla u = 0 \quad (\text{all frequencies have same velocity})$$

and parabolic PDE

$$-\partial_t u + \Delta u = 0 \quad (\text{all frequencies decay to zero}).$$

Norms

Some additional notation:

- For a function $f : \mathbb{R}^d \rightarrow \mathbb{C}$ we take

$$\|f\|_{L^p} = \left(\int_{\mathbb{R}^d} |f(x)|^p dx \right)^{\frac{1}{p}}, \quad \|f\|_{L^\infty} = \operatorname{ess\,sup}_{x \in \mathbb{R}^d} |f(x)|.$$

Norms

Some additional notation:

- For a function $f : \mathbb{R}^d \rightarrow \mathbb{C}$ we take

$$\|f\|_{L^p} = \left(\int_{\mathbb{R}^d} |f(x)|^p dx \right)^{\frac{1}{p}}, \quad \|f\|_{L^\infty} = \operatorname{ess\ sup}_{x \in \mathbb{R}^d} |f(x)|.$$

- Also require a space measure smoothness, here $\nabla = (\partial_1, \dots, \partial_d)$,

$$\|f\|_{H^1} = \left(\|f\|_{L^2}^2 + \|\nabla f\|_{L^2}^2 \right)^{\frac{1}{2}}, \quad \|f\|_{\dot{H}^1} = \|\nabla f\|_{L^2}.$$

Norms

Some additional notation:

- For a function $f : \mathbb{R}^d \rightarrow \mathbb{C}$ we take

$$\|f\|_{L^p} = \left(\int_{\mathbb{R}^d} |f(x)|^p dx \right)^{\frac{1}{p}}, \quad \|f\|_{L^\infty} = \operatorname{ess\ sup}_{x \in \mathbb{R}^d} |f(x)|.$$

- Also require a space measure smoothness, here $\nabla = (\partial_1, \dots, \partial_d)$,

$$\|f\|_{H^1} = \left(\|f\|_{L^2}^2 + \|\nabla f\|_{L^2}^2 \right)^{\frac{1}{2}}, \quad \|f\|_{\dot{H}^1} = \|\nabla f\|_{L^2}.$$

- Given a space-time map $u(t, x) : \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{C}$ we take

$$\|u\|_{L_t^q L_x^r} = \left\| \|u(t, x)\|_{L_x^r} \right\|_{L_t^q}, \quad \|u\|_{L_t^\infty H_x^1} = \left\| \|u(t, x)\|_{H_x^1} \right\|_{L_t^\infty}.$$

The linear problem

Given data f , find a (unique) solution $u : \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{C}$ such that

$$i\partial_t u + \Delta u = 0, \quad u(0) = f.$$

The linear problem

Given data f , find a (unique) solution $u : \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{C}$ such that

$$i\partial_t u + \Delta u = 0, \quad u(0) = f.$$

Can solve linear problem **explicitly**!

Assume that f **decays**, then have the unique global solution

$$u(t, x) = \frac{1}{(4\pi it)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{i \frac{|x-y|^2}{4t}} f(y) dy.$$

Consequences

Solution to linear Schrödinger equation given by

$$u(t, x) = \frac{1}{(4\pi it)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{i \frac{|x-y|^2}{4t}} f(y) dy$$

Consequences

Solution to linear Schrödinger equation given by

$$u(t, x) = \frac{1}{(4\pi it)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{i\frac{|x-y|^2}{4t}} f(y) dy$$

- Clearly solution decays pointwise as $t \rightarrow \infty$. In fact have dispersive bound

$$\|u(t)\|_{L_x^\infty(\mathbb{R}^d)} \leq |t|^{-\frac{d}{2}} \|f\|_{L^1}.$$

Consequences

Solution to linear Schrödinger equation given by

$$u(t, x) = \frac{1}{(4\pi it)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{i\frac{|x-y|^2}{4t}} f(y) dy$$

- Clearly solution decays pointwise as $t \rightarrow \infty$. In fact have dispersive bound

$$\|u(t)\|_{L_x^\infty(\mathbb{R}^d)} \leq |t|^{-\frac{d}{2}} \|f\|_{L^1}.$$

- By differentiating in time, and integrating by parts, can also conclude the conservation of mass and energy

$$\|u(t)\|_{L_x^2} = \|f\|_{L^2}, \quad \|\nabla u(t)\|_{L_x^2} = \|\nabla f\|_{L^2}.$$

Thus solution **disperses** as $t \rightarrow \infty$.

Issues

Solution to linear Schrödinger equation given by

$$u(t, x) = \frac{1}{(4\pi it)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{i \frac{|x-y|^2}{4t}} f(y) dy$$

Not at all obvious that $u(t) \rightarrow f$ as $t \rightarrow 0$!

Issues

Solution to linear Schrödinger equation given by

$$u(t, x) = \frac{1}{(4\pi it)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{i \frac{|x-y|^2}{4t}} f(y) dy$$

Not at all obvious that $u(t) \rightarrow f$ as $t \rightarrow 0$!

- Convergence in norm (say H^1 or L^2) true.

Issues

Solution to linear Schrödinger equation given by

$$u(t, x) = \frac{1}{(4\pi it)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{i \frac{|x-y|^2}{4t}} f(y) dy$$

Not at all obvious that $u(t) \rightarrow f$ as $t \rightarrow 0$!

- Convergence in norm (say H^1 or L^2) true.
- Problem of **pointwise** convergence, namely

$$\lim_{t \rightarrow \infty} u(t, x) = f(x)$$

dates back to [Carleson1979](#). True for smooth data $f \in H^1$ but can in fact **fail** for rough data $f \in L^2$ [Dahlberg-Kenig1982](#), [Bourgain2016](#) (sharp regularity required still open question).

Issues

Solution to linear Schrödinger equation given by

$$u(t, x) = \frac{1}{(4\pi i t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{i \frac{|x-y|^2}{4t}} f(y) dy$$

- Smooth data can lead to singular solutions

$$u(t, x) = \frac{1}{(4\pi i(t-1))^{\frac{d}{2}}} e^{i \frac{|x|^2}{4(t-1)}}.$$

- Loss of uniqueness: there exists (smooth) solutions $u(t, x)$ s.t. $u = 0$ for $t \leq 0$ and $u \neq 0$ for $t > 0$! Schrödinger analogue of Tychonoff's construction for the heat equation.

Both (1) + (2) occur as examples have **no decay** as $|x| \rightarrow \infty$.

Energy can disperse from $\infty \implies$ counteracts dispersive decay.

The nonlinear problem

Given data f , find a (unique) solution $u : \mathbb{R} \times \mathbb{R}^4 \rightarrow \mathbb{C}$ such that

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

- Fixed $d = 4$ as numerology works out nicely. This is known as the **focusing energy critical** nonlinear Schrödinger equation (NLS).

The nonlinear problem

Given data f , find a (unique) solution $u : \mathbb{R} \times \mathbb{R}^4 \rightarrow \mathbb{C}$ such that

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

- Fixed $d = 4$ as numerology works out nicely. This is known as the **focusing energy critical** nonlinear Schrödinger equation (NLS).
- Problem heavily studied in all dimensions $d \geq 1$

Strichartz1977, Cazenave-Weissler1990, Bourgain1999,
Colliander-Keel-Staffilani-Takaoka-Tao2004, Kenig-Merle2006,
Dodson2019, ...

The nonlinear problem

Given data f , find a (unique) solution $u : \mathbb{R} \times \mathbb{R}^4 \rightarrow \mathbb{C}$ such that

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

- Fixed $d = 4$ as numerology works out nicely. This is known as the **focusing energy critical** nonlinear Schrödinger equation (NLS).
- Problem heavily studied in all dimensions $d \geq 1$

Strichartz1977, Cazenave-Weissler1990, Bourgain1999,
Colliander-Keel-Staffilani-Takaoka-Tao2004, Kenig-Merle2006,
Dodson2019, ...

Immediate Issue:

In contrast to linear case, no formula for solution!

⇒ need to use alternative arguments to study dynamics.

Linear vs Nonlinear behaviour

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

Roughly speaking, the evolution of a nonlinear dispersive PDE is a combination of three regimes:

- ① Linear terms dominate.
- ② Nonlinear interactions dominate.
- ③ Intermediate (or critical) behaviour.

Linear terms dominate

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

- Solution exists globally in time, and converges to a linear solution at $t = \infty$ (*scattering*).
- Essentially all global bounds satisfied by the free evolution, also hold for the nonlinear evolution.
- Nonlinear effects are weak, and can only occur for short times.
- Typically this scenario tends to hold for small data, short times, high regularities, ...

Nonlinear interactions dominate

$$i\partial_t u + \Delta u = -|\mathbf{u}|^2 \mathbf{u}, \quad u(0) = f.$$

- Solutions can form singularities in finite times (or even instantaneously), thus even local well-posedness can fail. If conserved quantities prevent blow-up (i.e. non-focusing nonlinearities), then solution is unstable for short to medium times.
- Typically this behaviour arises for large data, low regularities, long times, strong nonlinearities ...

Nonlinear interactions dominate

$$i\partial_t u + \Delta u = -|\mathbf{u}|^2 \mathbf{u}, \quad u(0) = f.$$

Theorem (Glassey 1977)

Assume $f \in H^1$ satisfies $\|x|f\|_{L^2} < \infty$ and assume energy is negative

$$\mathcal{E}_{NLS}[f] = \int_{\mathbb{R}^d} \frac{1}{2} |\nabla f|^2 - \frac{1}{4} |f|^4 dx < 0.$$

Then solution u forms singularity in finite time.

Nonlinear interactions dominate

$$i\partial_t u + \Delta u = -|\mathbf{u}|^2 \mathbf{u}, \quad u(0) = f.$$

Theorem (Glassey 1977)

Assume $f \in H^1$ satisfies $\|x|f\|_{L^2} < \infty$ and assume energy is negative

$$\mathcal{E}_{NLS}[f] = \int_{\mathbb{R}^d} \frac{1}{2} |\nabla f|^2 - \frac{1}{4} |f|^4 dx < 0.$$

Then solution u forms singularity in finite time.

Key idea in proof is to compute the second derivative in time of the virial quantity

$$V(t) = \int_{\mathbb{R}^4} |x|^2 |u(t, x)|^2 dx.$$

This is negative(!) so $V(t)$ concave $\Rightarrow V(t)$ must reach zero in finite time.

Intermediate or critical behaviour

- The linear and nonlinear effects are balanced. This leads to modifications to the asymptotic behaviour (i.e. log corrections to the expected linear behaviour) or non-dispersive solitary wave, or soliton like solutions.

Intermediate or critical behaviour

- The linear and nonlinear effects are balanced. This leads to modifications to the asymptotic behaviour (i.e. log corrections to the expected linear behaviour) or non-dispersive solitary wave, or soliton like solutions.
- The KdV equation

$$\partial_t u + \partial_{xxx} u + u \partial_x u = 0$$

has the (explicit) soliton solutions

$$u(t, x) = Q(x - t),$$

where $Q(x) = \frac{1}{2} \operatorname{sech}^2(\frac{x}{2})$.

- First observed by Scott Russell in 1834 in a canal in Scotland.

Intermediate or critical behaviour

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

Focusing NLS has similar explicit solutions:

$$Q(x) = \frac{8}{8 + |x|^2}$$

- The **ground state** Q (or Aubin-Talenti function [Aubin1976](#), [Talenti1976](#)) can be characterised as the optimiser (up to translations and rescalings) of the **Sobolev embedding**

$$\|g\|_{L^4(\mathbb{R}^4)} \leq C_d \|\nabla g\|_{L^2(\mathbb{R}^4)}.$$

- Also satisfies the elliptic equation

$$\Delta Q = -Q^3.$$

- Clearly the solution $u(t, x) = Q(x)$ is far from linear!

The Small Data Regime

Intuition:

If data ‘small’, we expect solution u to be small, and so $|u|^2 u$ very small.

$\implies u$ should be close to linear solution $(i\partial_t + \Delta)u_L = 0$.

What do we mean by small?

A good choice is to use norm

$$\|f\|_{H^1(\mathbb{R}^d)} = \left(\int_{\mathbb{R}^d} |f(x)|^2 + |\nabla f(x)|^2 dx \right)^{\frac{1}{2}}$$

Why is this a good choice?

Corresponds to ‘energy’ of solution, plays key role in controlling large time dynamics in $4d$.

The nonlinear problem: Small data global existence

Theorem (Cazenave-Weissler 1990)

There exists $\epsilon > 0$ such that for any data $\|f\|_{H^1(\mathbb{R}^4)} < \epsilon$ there exists a (unique) solution $u \in C(\mathbb{R}; H^1(\mathbb{R}^4))$ to

$$(i\partial_t + \Delta)u = -|u|^2u, \quad u(0) = f.$$

Moreover, there exists linear solutions $(i\partial_t + \Delta)u_{\pm\infty} = 0$ such that

$$\lim_{t \rightarrow \pm\infty} \|u(t) - u_{\pm\infty}(t)\|_{H^1(\mathbb{R}^4)} = 0.$$

- This is a small data result as **requires** that the data $f \in H^1(\mathbb{R}^4)$ satisfies

$$\|f\|_{H^1(\mathbb{R}^4)} < \epsilon.$$

- The space $C(\mathbb{R}; H^1(\mathbb{R}^4))$ is the collection of all continuous functions $u(t) : \mathbb{R} \rightarrow H^1(\mathbb{R}^4)$.

The nonlinear problem: Small data global existence

Theorem (Cazenave-Weissler 1990)

There exists $\epsilon > 0$ such that for any data $\|f\|_{H^1(\mathbb{R}^4)} < \epsilon$ there exists a (unique) solution $u \in C(\mathbb{R}; H^1(\mathbb{R}^4))$ to

$$(i\partial_t + \Delta)u = -|u|^2u, \quad u(0) = f.$$

Moreover, there exists linear solutions $(i\partial_t + \Delta)u_{\pm\infty} = 0$ such that

$$\lim_{t \rightarrow \pm\infty} \|u(t) - u_{\pm\infty}(t)\|_{H^1(\mathbb{R}^4)} = 0.$$

- The final property is called **scattering**. It states that for large times the solution $u(t)$ converges to a solution to the linear equation.
 \implies Linear terms dominate dynamics in the small data case.

What is a solution?

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

First issue: Data is in H^1 , so at most can expect u to also be H^1 . What does it mean for u to be a solution?

What is a solution?

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

First issue: Data is in H^1 , so at most can expect u to also be H^1 . What does it mean for u to be a solution?

- Define the Fourier transform

$$\widehat{f}(\xi) = \mathcal{F}[f](\xi) = \int_{\mathbb{R}^4} e^{-ix \cdot \xi} f(x) dx$$

and let $e^{it\Delta}$ denote the free propagator

$$e^{it\Delta} f = \mathcal{F}^{-1}[e^{-it|\xi|^2} \widehat{f}(\xi)](x).$$

What is a solution?

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

First issue: Data is in H^1 , so at most can expect u to also be H^1 . What does it mean for u to be a solution?

- Define the Fourier transform

$$\widehat{f}(\xi) = \mathcal{F}[f](\xi) = \int_{\mathbb{R}^4} e^{-ix \cdot \xi} f(x) dx$$

and let $e^{it\Delta}$ denote the free propagator

$$e^{it\Delta} f = \mathcal{F}^{-1}[e^{-it|\xi|^2} \widehat{f}(\xi)](x).$$

- Applying Duhamel formula/variation of constants, we can write solution in the integral form

$$u(t) = e^{it\Delta} f - i \int_0^t e^{i(t-s)\Delta} (|u|^2 u)(s) ds.$$

What is a solution?

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

First issue: Data is in H^1 , so at most can expect u to also be H^1 . What does it mean for u to be a solution?

- Define the Fourier transform

$$\widehat{f}(\xi) = \mathcal{F}[f](\xi) = \int_{\mathbb{R}^4} e^{-ix \cdot \xi} f(x) dx$$

and let $e^{it\Delta}$ denote the free propagator

$$e^{it\Delta} f = \mathcal{F}^{-1}[e^{-it|\xi|^2} \widehat{f}(\xi)](x).$$

- Applying Duhamel formula/variation of constants, we can write solution in the integral form

$$u(t) = e^{it\Delta} f - i \int_0^t e^{i(t-s)\Delta} (|u|^2 u)(s) ds.$$

- So by solution, we really mean a solution to the integral formulation of the equation.

Ideas in Proof

Define

$$\Phi(u) = e^{it\Delta} f - i \int_0^t e^{i(t-s)\Delta} (|u|^2 u)(s) ds$$

Goal: Find a nice Banach space $X \subset C(\mathbb{R}; H^1)$ such that

- ① We have the linear bound

$$\|e^{it\Delta} f\|_X \lesssim \|f\|_{H^1}.$$

Ideas in Proof

Define

$$\Phi(u) = e^{it\Delta} f - i \int_0^t e^{i(t-s)\Delta} (|u|^2 u)(s) ds$$

Goal: Find a nice Banach space $X \subset C(\mathbb{R}; H^1)$ such that

- ① We have the linear bound

$$\|e^{it\Delta} f\|_X \lesssim \|f\|_{H^1}.$$

- ② We have the nonlinear bound

$$\left\| \int_0^t e^{i(t-s)\Delta} (|u|^2 u)(s) ds \right\|_X \lesssim \|u\|_X^3.$$

Ideas in Proof

Define

$$\Phi(u) = e^{it\Delta} f - i \int_0^t e^{i(t-s)\Delta} (|u|^2 u)(s) ds$$

Goal: Find a nice Banach space $X \subset C(\mathbb{R}; H^1)$ such that

① We have the linear bound

$$\|e^{it\Delta} f\|_X \lesssim \|f\|_{H^1}.$$

② We have the nonlinear bound

$$\left\| \int_0^t e^{i(t-s)\Delta} (|u|^2 u)(s) ds \right\|_X \lesssim \|u\|_X^3.$$

Standard fixed point argument (i.e. Picard existence theorem from ODE) then implies that Φ has a (unique) fixed point in a small ball around $e^{it\Delta} f \in X$.

⇒ get solution to integral formulation of problem

Linear Estimates

Theorem (Strichartz 1977)

We have

$$\|e^{it\Delta} f\|_{L^3_{t,x} \cap L^\infty_t L^2_x} \lesssim \|f\|_{L^2}, \quad \left\| \int_0^t e^{i(t-s)\Delta} F(s) ds \right\|_{L^3_{t,x} \cap L^\infty_t L^2_x} \lesssim \|F\|_{L^{\frac{3}{2}}_{t,x}}.$$

- Start of a long story connecting problems in harmonic analysis to estimates for dispersive PDE. Estimates of these type go via the name **Strichartz Estimates**. At least on \mathbb{R}^n , optimal result due to **Keel-Tao 1998**.

Linear Estimates

Theorem (Strichartz 1977)

We have

$$\|e^{it\Delta} f\|_{L^3_{t,x} \cap L^\infty_t L^2_x} \lesssim \|f\|_{L^2}, \quad \left\| \int_0^t e^{i(t-s)\Delta} F(s) ds \right\|_{L^3_{t,x} \cap L^\infty_t L^2_x} \lesssim \|F\|_{L^{\frac{3}{2}}_{t,x}}.$$

- Start of a long story connecting problems in harmonic analysis to estimates for dispersive PDE. Estimates of these type go via the name **Strichartz Estimates**. At least on \mathbb{R}^n , optimal result due to **Keel-Tao 1998**.
- Above suggests we should take our solution space X to be

$$\|u\|_X = \|u\|_{L^\infty_t H^1_x} + \|\nabla u\|_{L^3_{t,x}}.$$

The above Strichartz estimate then gives

$$\|\Phi(u)\|_X = \left\| e^{it\Delta} f - i \int_0^t e^{i(t-s)\Delta} (|u|^2 u)(s) ds \right\|_X \lesssim \|f\|_{H^1} + \|\nabla(|u|^2 u)\|_{L^{\frac{3}{2}}_{t,x}}.$$

Nonlinear Estimate

Only remains to prove nonlinear estimate

$$\|\nabla(|u|^2 u)\|_{L_x^{\frac{3}{2}}} \lesssim \|u\|_{L_{t,x}^3}^2 \|u\|_{L_t^\infty H^1}$$

but this is an easy consequence of Hölder's inequality: if $\frac{1}{r} = \frac{1}{a} + \frac{1}{b}$ then

$$\|fg\|_{L^r} \leq \|f\|_{L^a} \|g\|_{L^b},$$

together with the Sobolev embedding

$$\|f\|_{L_x^{12}(\mathbb{R}^4)} \lesssim \|\nabla f\|_{L_x^3(\mathbb{R}^4)}.$$

Summary

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

- Small data theory in H^1 for the **nonlinear problem** is essentially a consequence of the **linear** Strichartz estimate

$$\|e^{it\Delta} f\|_{L^3_{t,x}} \lesssim \|f\|_{L^2}.$$

Summary

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

- Small data theory in H^1 for the **nonlinear problem** is essentially a consequence of the **linear** Strichartz estimate

$$\|e^{it\Delta} f\|_{L^3_{t,x}} \lesssim \|f\|_{L^2}.$$

- This estimate can be thought of as another way to capture the dispersive properties of the evolution, that very conveniently only requires $f \in L^2$, as opposed to the usual dispersive estimate

$$\|e^{it\Delta} f\|_{L^\infty_x} \lesssim |t|^{-2} \|f\|_{L^1_x}.$$

Summary

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

- Small data theory in H^1 for the **nonlinear problem** is essentially a consequence of the **linear** Strichartz estimate

$$\|e^{it\Delta} f\|_{L^3_{t,x}} \lesssim \|f\|_{L^2}.$$

- This estimate can be thought of as another way to capture the dispersive properties of the evolution, that very conveniently only requires $f \in L^2$, as opposed to the usual dispersive estimate

$$\|e^{it\Delta} f\|_{L^\infty_x} \lesssim |t|^{-2} \|f\|_{L^1_x}.$$

- Essentially the same strategy underlies much of the progress in dispersive PDE over the past two decades, at least in the small data or linear regime.

The nonlinear problem II: nonperturbative setting

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

What happens for large data?

Have some hope to control dynamics as the **energy**

$$\mathcal{E}_{NLS}[f] = \int_{\mathbb{R}^4} \frac{1}{2} |\nabla f|^2 - \frac{1}{4} |f|^4 dx$$

and **mass**

$$\mathcal{M}[f] = \int_{\mathbb{R}^4} |f|^2 dx$$

are both conserved under the nonlinear flow

$$\mathcal{E}_{NLS}[u(t)] = \mathcal{E}_{NLS}[u(0)], \quad \mathcal{M}[u(t)] = \mathcal{M}[u(0)].$$

The nonlinear problem II: nonperturbative setting

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

$$\mathcal{E}_{NLS}[f] = \int_{\mathbb{R}^4} \frac{1}{2} |\nabla f|^2 - \frac{1}{4} |f|^4 dx$$

Bad news:

- (1) Energy and mass alone not sufficient to control dynamics.
- (2) Unlike small data case, nonlinear interactions can dominate!

For instance:

The nonlinear problem II: nonperturbative setting

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

$$\mathcal{E}_{NLS}[f] = \int_{\mathbb{R}^4} \frac{1}{2} |\nabla f|^2 - \frac{1}{4} |f|^4 dx$$

Bad news:

- (1) Energy and mass alone not sufficient to control dynamics.
- (2) Unlike small data case, nonlinear interactions can dominate!

For instance:

- For any sufficiently decaying data with negative energy

$$\mathcal{E}_{NLS}[f] < 0,$$

the solution $u(t)$ forms a singularity in finite time [Glassey 1977](#).

The nonlinear problem II: nonperturbative setting

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

$$\mathcal{E}_{NLS}[f] = \int_{\mathbb{R}^4} \frac{1}{2} |\nabla f|^2 - \frac{1}{4} |f|^4 dx$$

Bad news:

- (1) Energy and mass alone not sufficient to control dynamics.
- (2) Unlike small data case, nonlinear interactions can dominate!

For instance:

- Define $Q(x) = \frac{8}{8+|x|^2}$. Then $\Delta Q = -Q^3$ and hence

$$u(t, x) = Q(x)$$

is a global (nondispersive!) solution.

The nonlinear problem II: Scattering below ground state

Theorem (Dodson2019)

Assume that $f \in H^1(\mathbb{R}^4)$ with

$$\mathcal{E}_{NLS}[f] < \mathcal{E}_{NLS}[Q] \quad \text{and} \quad \|f\|_{L^4(\mathbb{R}^4)} < \|Q\|_{L^4(\mathbb{R}^4)}.$$

Then there exists a unique global solution $u \in C(\mathbb{R}; H^1(\mathbb{R}^d))$ to

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

Moreover $u(t)$ scatters to a linear solution as $t \rightarrow \pm\infty$.

Builds on many previous results:

Cazenave-Weissler1990, Bourgain1999,

Colliander-Keel-Staffilani-Takaoka-Tao2004, Kenig-Merle2006,

Killip-Visan2010, ...

The nonlinear problem II: Scattering below ground state

Theorem (Dodson2019)

Assume that $f \in H^1(\mathbb{R}^4)$ with

$$\mathcal{E}_{NLS}[f] < \mathcal{E}_{NLS}[Q] \quad \text{and} \quad \|f\|_{L^4(\mathbb{R}^4)} < \|Q\|_{L^4(\mathbb{R}^4)}.$$

Then there exists a unique global solution $u \in C(\mathbb{R}; H^1(\mathbb{R}^d))$ to

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

Moreover $u(t)$ scatters to a linear solution as $t \rightarrow \pm\infty$.

The condition $\|f\|_{L^4(\mathbb{R}^4)} < \|Q\|_{L^4(\mathbb{R}^4)}$ is necessary to ensure global existence!

In fact, if

$$f \text{ radial, } \mathcal{E}_{NLS}[f] < \mathcal{E}_{NLS}[Q], \quad \text{and } \|f\|_{L^4(\mathbb{R}^4)} > \|Q\|_{L^4(\mathbb{R}^4)}$$

then solution u blows up in finite time [Kenig-Merle2006](#).

The nonlinear problem II: Scattering below ground state

Theorem (Dodson2019)

Assume that $f \in H^1(\mathbb{R}^4)$ with

$$\mathcal{E}_{NLS}[f] < \mathcal{E}_{NLS}[Q] \quad \text{and} \quad \|f\|_{L^4(\mathbb{R}^4)} < \|Q\|_{L^4(\mathbb{R}^4)}.$$

Then there exists a unique global solution $u \in C(\mathbb{R}; H^1(\mathbb{R}^d))$ to

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

Moreover $u(t)$ scatters to a linear solution as $t \rightarrow \pm\infty$.

The condition $\|f\|_{L^4(\mathbb{R}^4)} < \|Q\|_{L^4(\mathbb{R}^4)}$ ensures that the energy is coercive, namely

$$\mathcal{E}_{NLS}[u](t) = \int_{\mathbb{R}^4} \frac{1}{2} |\nabla u(t)|^2 - \frac{1}{4} |u(t)|^4 dx \approx \|u(t)\|_{\dot{H}^1}^2.$$

Although $\|u(t)\|_{L^4}$ not conserved, the constraint $\|u(t)\|_{L^4} < \|Q\|_{L^4}$ is preserved under the nonlinear evolution.

The nonlinear problem II: Scattering below ground state

Theorem (Dodson2019)

Assume that $f \in H^1(\mathbb{R}^4)$ with

$$\mathcal{E}_{NLS}[f] < \mathcal{E}_{NLS}[Q] \quad \text{and} \quad \|f\|_{L^4(\mathbb{R}^4)} < \|Q\|_{L^4(\mathbb{R}^4)}.$$

Then there exists a unique global solution $u \in C(\mathbb{R}; H^1(\mathbb{R}^d))$ to

$$i\partial_t u + \Delta u = -|u|^2 u, \quad u(0) = f.$$

Moreover $u(t)$ scatters to a linear solution as $t \rightarrow \pm\infty$.

The dynamics above the ground state remain an important open problem.

Closely connected to the **soliton resolution conjecture** which states that all global in time solutions should eventually resolve into sum of solitons together with a dispersive error.