Harmonic Analysis and Dispersive
PDE

Part Il

Timothy Candy

University of Otago

University Department of
of Otago Mathematics and Statistics

AAAAAAAAAAAAAAAAAAA



The Fourier Restriction Problem
The Fourier transform of a function f € L'(R") is given by
fO)= | flaye=tde.

Basic question: R
How large can f be?
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The Fourier Restriction Problem
The Fourier transform of a function f € L'(R") is given by

F©O = flz)e™de.

R

Better question:

Let 1 < p,q < co. When do we have ||]/C\||Lq(Rn) S Ifllze@ey?
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The Fourier Restriction Problem
The Fourier transform of a function f € L'(R") is given by

f&) = | f@emede.
Better question:

Let 1 < p, ¢ < co. When do we have ||f||Lq(]Rn) S llze@ey?

o If p = 2, then Plancherel gives || f|| 12 ~ || f| 2.
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The Fourier Restriction Problem
The Fourier transform of a function f € L'(R") is given by

f&) = | f@emede.
Better question:

Let 1 < p, ¢ < co. When do we have ||f||Lq(]Rn) S llze@ey?

® |f p = 2, then Plancherel gives Hﬂ|L2 ~ || fll L2
® If p = oo, then || fllz < |Ifllz:-
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The Fourier Restriction Problem
The Fourier transform of a function f € L'(R") is given by

f&) = | f@emede.
Better question:

Let 1 < p, ¢ < co. When do we have ||f||Lq(]Rn) S llze@ey?

o If p = 2, then Plancherel gives || f|| 12 ~ || f| 2.
° If p=o0, then || f|lre < || fllL:-
® |Interpolating then gives

1 1 ~
-+-=1land1<p<2, = |fllze S Ifllze-

q P

In fact this is only possibility (Hausdorf-Young Inequality), so the story is
complete.
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The Fourier Restriction Problem
What if only want to estimate the size of fon a “small” set?

Suppose S C R™ is a hypersurface. For which 1 < p, ¢ < co do we have

1 £llacsy S Nfllze@ny?
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The Fourier Restriction Problem
What if only want to estimate the size of fon a “small” set?

Suppose S C R™ is a hypersurface. For which 1 < p, ¢ < co do we have J

1 £llacsy S Nfllze@ny?

This type of question arises in PDE, number theory, geometric measure theory ...

® p = 2 not possible since fonly an L2(R™) function, can't restrict to set of
measure zero!

® p=1,then fcontinuous = restriction ﬂs is well-defined and belongs to
Leo(Sm1).
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The Fourier Restriction Problem
What if only want to estimate the size of fon a “small” set?

Suppose S C R™ is a hypersurface. For which 1 < p, ¢ < co do we have

[ £llacsy S Nfllze@ny?

What about 1 < p < 27?
¢ Restriction to the plane not possible!

Suppose S = {(z1,...,2,) € R" | 2, = 0} and take
f(x) = w(xla vy Tn—1, Aill’n)
with ¢ € C§° and ¢ # 0.

Then ) R
Il flle®ny = A7, 1 fllLacsy 2 A

hence if restriction bound holds A < AP Letting A — co gives p = 1.
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The Fourier Restriction Problem
What if only want to estimate the size of fon a “small” set?

Suppose S C R™ is a hypersurface. For which 1 < p, ¢ < oo do we have

I fllzacsy S N fllzewn)?

What about 1 < p < 2?
® Restriction to the plane not possible!

Suppose S = {(z1,...,2n) € R" [ 2, = 0} and take
f(l‘) = 1/)(1;17 ey Tn—1, )\_1.’17,”)
with ¢ € C§° and ¢ # 0.

Then ) N
[ fllLr@ny = AP, ([ fllLacs) 2 A

hence if restriction bound holds A < AP Letting A — oo gives p = 1.

Stein 60’s: true for some 1 < p < 2 in the case of the sphere S = S"~ 1.
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The Extension Problem

Write surface S = {(®(¢),¢) | € € R%} (so d = n — 1). Given f : R? — C define
extension operator

(Esf)(t,z) = / O+ f(¢)d
R

Assume S'is (compact) surface with non-vanishing Gaussian curvature. If

1eg

@ 2(d+1) and <

d+2(1 — —) we have

1€sfllrs @ity S Nfllee)-
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The Extension Problem

Write surface S = {(®(¢),¢) | € € R%} (so d = n — 1). Given f : R? — C define
extension operator

(Esf)(t,z) = / (02O f(6)de.
Rd

Assume S'is (compact) surface with non-vanishing Gaussian curvature. If

3 < aem and § < g5(1 - 1) we have

I€sfllze , wr+ey S If e (ay-

e Stein-Thomas estimate: if S = S and l < then we have

< 5@
I€sF s, ®r+ay S Il L2rey-
® Take d = 4, this gives
€ fllze , wrray S NNl 2 qra)-
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The Extension Problem

Write surface S = {(®(¢),¢) | € € R%} (so d = n — 1). Given f : R? — C define
extension operator

(Esf)(t,z) = / (02O f(6)de.
Rd

Assume S'is (compact) surface with non-vanishing Gaussian curvature. If

3 < aem and § < g5(1 - 1) we have

I€sfllze , wr+ey S If e (ay-

o If ®(¢) = [£]?, then S is a paraboloid, and u(t, z) = Es f(t,z) gives solution
to Schrédinger equation
10u + Au = 0.

In particular, Stein-Thomas estimate gives the Strichartz estimate

lullzs  gi+ey S 1fllL2a)-
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Why does curvature help?

Fix 0 < 1 and suppose f supported in ball Bs(&y) = {|£ — &o| < ¢}. Note that
for £ € Bs(&o) we have Taylor series expansion

D(£) = (&) + V(&) - (€ — &) + O(82).

Timothy Candy — Harmonic Analysis and Dispersive PDE 5 / 26



Why does curvature help?

Fix 0 < 1 and suppose f supported in ball Bs(&y) = {|£ — &o| < ¢}. Note that
for £ € Bs(&o) we have Taylor series expansion

(&) = D(éo) + V(&) - (€ — &) + O(8?).
In particular, provided |¢t| < §~2 short computation gives
Esnta)l=| [ e~ [ etervrenes e
Rd Rd

~

= |f(z +tV (&)l
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Why does curvature help?

Fix 0 < 1 and suppose f supported in ball Bs(&y) = {|£ — &o| < ¢}. Note that
for £ € Bs(&o) we have Taylor series expansion

D(&) = (&) + V(&) - (€ — &) + O(6?).
In particular, provided |t| < §~2 short computation gives
(Eshta) = | [ el | [ cerevoen el
R4 Rd

o~

= [f(z +tV2(&))|-
In other words:

If supp f C Bs(&o) then for times |t| < §~2, extension operator just translates
Fourier transform f by tV® (&) J

Key observation: if we also have supp fc Bs-1(0) say, then at least for times
|t| < =2 we have supp Es f contained in ‘tube’

{(t,z) eRx R | |2 +tVB(&)| < 671}
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Why does curvature help?

Decomposing general f gives wave packet decomposition: for times |¢t| < §~
we have

Esf(t,a) = arfr,  fr(t,@) = foper(@ +tVB(Er))

2

TeT
where
e T is collection of tubes T R'*% size 6=2 x 6! oriented in direction
(17 _V(I)(§O))

® Coefficients |ar| ~ 1 and supp fr C T

G -V“Y-(‘D (-vzED) G,-v26D)

Y
Q‘—-/qu‘? (‘&“ 5 ('—r)' Q‘Ys\ /—\/V

Y=o
(wvdtwe. = V&R varios

= hbyy spread out |

No ww\'wt > VEGED ekt

= by ow bp!
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Beyond the Stein-Thomas exponent

Fourier Restriction Conjecture - Stein 60’s

Assume S'is compact surface with non-vanishing Gaussian curvature.

1 d
7 <73 (d+1) and 1 <d+2(1——)wehave

1€s fllrs, @i+ay S Il @ay-

® Known in the case d = 1 : Fefferman-Stein’70, Zygmund’74,
Fix d = 2. Conjectured range is then ¢ > 3 (setting % =1(1- %))
® Stein-Thomas range: q > 4
® "Bilinear implies linear": 3 + % <qg<4
Bourgain’91, Tao—Vargas’OO Wolff’01, Tao’Ol,m

e "Multilinear implies linear": 3 + <q<3 + =
Bourgain-Guth’11, Guth’16, Wang Wu’24

® Remains open despite much recent progress...
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Bilinear Restriction Estimates

Define

eVl = e (HEI+=8) F(£) e
R

(this is essentially the extension operator for the cone).
Theorem ( Tao’01)
Let M2 < g<2,A>1ande> 0. If

supp f C {[¢ —e1| < 1},  suppg C {|¢ — hea| < A}

then
it|V|f6it|V|

1_ 1
lle gllzs @mrny S A 27N Fll 22wy |9l 22 Ry

® The Fourier support assumption implies that the surfaces are transverse.

® The first bilinear restriction estimate using both transversality and curvature
due to Bourgain’91, full non-endpoint range is due to Wolff’01.
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Bilinear Restriction Estimates

Let 8 <g<2,A>1ande> 0. If

suppr{|§—el|<<1}, supp g C {|€ — Ae2| < A}

then

; ; i_il
eV Fe Vgl s @any S AT fll L2 llgll 2

Why is transversality helpful?
surfaces transverse —- waves propagate in transverse directions
which means better decay. For instance, on R'*! we have
If(@+t)g(@ = t)llLz ®i+1) = [ fllLa)llgllLa)

but
||f(:c = t)g(:c + t)”lzf,z(Rl“) = 00.
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Bilinear Restriction Estimates

Let ™3 < g<2,A>1ande>0. If

supp f C {|¢ —e1| < 1},  suppd C {|€ — hea| < A}

then A A L
||€lt|v|felﬂvlgHLgx(RHn) S AT fl L2 lgll L2

® Qriginally, bilinear restriction estimates used to make progress on linear
restriction problem.

® Would like to apply result to nonlinear PDE. Two problems:
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Bilinear Restriction Estimates

Let ™3 < g<2,A>1ande>0. If

supp f C {|¢ —e1| < 1},  suppd C {|€ — hea| < A}

then A A L
||€lt|v|felﬂvlgHLgx(RHn) SATTE fllz2 gl L2

® Qriginally, bilinear restriction estimates used to make progress on linear
restriction problem.

® Would like to apply result to nonlinear PDE. Two problems:
® derivative loss
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Bilinear Restriction Estimates

Let ™3 < g<2,A>1ande>0. If

supp f C {|¢ —e1| < 1},  suppd C {|€ — hea| < A}

then A A L
||€“W|feltMgHLgx(RHn) S AT fl L2 lgll L2

® Qriginally, bilinear restriction estimates used to make progress on linear
restriction problem.
® Would like to apply result to nonlinear PDE. Two problems:

® derivative loss
® only holds for free waves
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Bilinear Restriction Estimates

Letﬁ'—‘;’ <qg<2,A>1. IfsuppfC {|€ —e1] < 1}, suppg C {|§ — Nea| < A}

then

g g 11
||€Zt|v|femvlg”Lg,z(RHn) S AT 2| fllzzllgllzz-

® No derivative loss as long as q¢ > z—ff

® Infact C. 19 contains a much more general result, which gives a sharp
bilinear restriction estimate for general phase functions (including solutions
to Schrédinger equation).

This solves first problem!

10/26
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Atomic Bilinear Restriction Estimates

Let 23 < g<2,A>1,and2 < b < m. Ifsuppa C {|€ —e1] < 1},
supp® C {|§ — Aez| < A} then

1_1
lullzs ey € X3 ullon, Tollor, -

® The atomic space U\bw is a Banach space of right-continuous functions
u : R*™ — C which are “close” to free solutions to the wave equation.
* Typical element u € U® is

N
u(t,z) = Zﬂ[%tﬁl)(t)e“'wfj, b <tg<- <ty <itny1=00
g=i

1
where (Z;V:l ||fj||bL2) " < 0. In particular eIVl f € U?.

This solves second problem!
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Atomic Bilinear Restriction Estimates

Theorem ( C.’19)

Letg—ﬁ’ <qg<2,A>1,and2<b< ﬁ. Ifsuppu C {| — e1| < 1},
supp v C {|¢ — Aea| < A} then

11
luollpg  @ny S AP 2 [lulluz, lvlloy, -

Summary:
® Removes derivative loss from result of Tao (at least away from endpoint).
® Shows that bilinear restriction estimates hold for functions “close” to free
solutions.
® Extends earlier result of C. -Herr’16 in case \ = 1.

® Applications
® Dispersive PDE:
C.-Herr’18, Shen-Soffer-Wu’22, C.-Herr-Nakanishi’22.
¢ Restriction problem for surfaces with degenerate curvature:
Carneiro-Sousa-Stovall’18, Buschenhenke-Miiller-Vargas’21.
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The Zakharov system

10yu + Au = vu,

1
—2831) — Av = Alul?
fe!

wherea € R,u:RxR* - Candv:R x R* —» R.

® Derived as a mathematical model for Langmuir waves in plasma physics by
Zakharov1972. Here u denotes the envelope of an electric field, and v is
the ion density.

® Taking the subsonic limit o — oo, formally gives the (focusing) cubic
nonlinear Schrédinger equation

i0pu + Au = —|ul?u.

In certain regimes this convergence has been demonstrated rigourously
Schochet-Weinsteinl1986, Masmoudi-Nakanishi2008.
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Hamiltonian formulation

10w+ Au = R(V)u,
i0,V — |V|V = |V||ul?

where (u,V) : R x R* — C and |V| = v/—A (define via say Fourier transform).

The Hamiltonian (or energy) and mass are

1 1 1 1
Ez(u,V) = / —|Vul? + |V > + zR(V)|u|?dz, M(u) = / ~|ul*dz.
it 2 1 2 o 2

Both energy and mass conserved under the nonlinear flow

Ez(u(t),v(t)) = Ez(u(0),V(0))

and
M(u(t)) = M(u(0)).
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Cauchy problem

i0yu + Au = R(V)u,
0,V — VIV = |V|[ul?,
(u, V)(0) = (f, 9)-
Fix d = 4 and assume data ( f, g) has finite energy and mass
Ez(f,9) + M(f) < 0.

Questions:
e Can we prove solution (u, V') exists globally in time?
® Do the linear dynamics dominate as ¢t — +o0?

Timothy Candy — Harmonic Analysis and Dispersive PDE
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Cauchy problem

i0yu + Au = R(V)u,
0V — V|V = |V]ul?,
(u, V)(0) = (f, 9)-
Fix d = 4 and assume data ( f, g) has finite energy and mass
Ez(f,9) + M(f) < 0.

Goal: If data has finite energy and mass, then solutions are global and scatter as J
t — oo.

® Scattering means that linear terms dominate as t — oc.
In other words, the solution (u, V') converges to a solution (u~, V) to the
linear problem

i@tuoo + AUOO = 0,
i0Vio — |V|Voo = 0.
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Obstructions I: Blow-up

10w+ Au = R(V)u,
i0V — |V|V = |V||ul?,
(u, V)(0) = (f,9)-

Analogous to the NLS case, solutions can blowup in finite time
® Merle1996 If d = 2, 3 then all radial solutions with negative energy
Ez(u, V) < 0 blow-up (either in finite time, or infinite time).
® Holmer2007 lll-posedness for “unbalanced” data when d = 1.
® Guo-Nakanishi2021 In d = 4 (weak) blowup/nonscattering for large
energy.

® Krieger-Schmid2024 Construction of blowup solutions in a neighbourhood
of ‘ground state’
8

Qz) = W
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Obstructions lI: Solitary Waves/Solitons

i0ru + Au = R(V)u,
0V ~ VIV = |V|[ul?,
(u, V)(0) = (f, 9)-
Again, as in the NLS case:
° LetQ(x) = ﬁ. Then AQ = —Q3

(w,V)(t) = (Q,~Q°)

gives a stationary solution to the Zakharov equation.

® Same obstruction as in the NLS case, and the ground state ) plays an
identical role here (smallest energy non-dispersive solution).
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Obstructions lI: Solitary Waves/Solitons

i0ru + Au = R(V)u,
i0V — |V|V = |V||ul?,
(u, V)(0) = (f,9)-

In view of what we know about the NLS, the following conjecture seems reason-
able.

Conjecture: global existence and scattering below ground state

If the data (f, g) has energy and mass below the ground state ), then solution
(u, V') is global and scatters to a linear solution as ¢t — cc.

® Conjecture essentially states that the ‘soliton’ ) is smallest energy
non-dispersive solution.

® Unlike the corresponding question for the NLS equation, conjecture is still
unresolved.
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Global Well-posedness Below the Ground State: Radial Case

Theorem (Guo-Nakanishi’21)
If data (f, g) is radial and below the ground state

E2(f,9) <€2(Q.~Q%),  lgllze < 1Q®|Iz2

then solution (u, V') is global and scatters.

® Lots of previous work!
Bourgain-Colliander’96, Ginibre-Tsutsumi-Velo’97,
Colliander-Holmer-Tzirakis’08,
Bejenaru-Herr-Holmer-Tataru’08, Bejenaru-Herr’10,

® Energy is coercive below the ground state, in fact we have

Ez(f,9) = [V fIIZ2 + llgllZ--

This is not true without the ground state constraint.
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Sebastian Herr (Bielefeld) and Kenji Nakanishi (RIMS - Kyoto).
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Non-radial data

If data (f, g) is below the ground state

€z(f,9) <€2(Q,~Q%),  llglz < QI

then solution (u, V') exists globally in time.
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Non-radial data

Theorem (C.-Herr-Nakanishi’21, C.-Herr-Nakanishi’23)
If data (f, g) is below the ground state

E2(f.9) <€2(Q,~Q%),  lgllze <I1Q®|Iz2

then solution (u, V') exists globally in time.

® Only shows that below the ground state @, solutions cannot form
singularities in finite time.

® Does not give any information on the dynamics.

For instance, we cannot rule out the possibility of ‘exotic’ non-dispersive
solutions below the ground state...
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Partial Progress

Theorem (C.2024)

If scattering fails, then there must exist a global solution (¢, ¢) to the Zakharov

equation and a trajectory () : R — R* such

that

(1) The solution (¢, ¢) lies below the ground state

gZ(d}v ¢) < S(Qv _Q2>7

sup [|¢(t) | z2ray < |Q%[| 2(wa)-
teR

(2) The solutions (v, ¢)(t, ) are stationary modulo translations, in the sense
that they remain concentrated in some neighborhood of the trajectory ().

x(t)

<)

Soln

—
=

conantaked @

dispusve.  case
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Partial Progress

Theorem (C.2024)

If scattering fails, then there must exist a global solution (v, ¢) to the Zakharov
equation and a trajectory x(t) : R — R* such that

(1) The solution (1), ¢) lies below the ground state

Ez(¥, 9) < £(Q, Q%) sup le(®)llz2@e) < 1Q%|2e)-

(2) The solutions (v, ¢)(t, 2:) are stationary modulo translations, in the sense
that they remain concentrated in some neighborhood of the trajectory x(t).

® The solution (¢, ¢) essentially behaves like a translated version of the
ground state solution (Q, —Q?)(z — z(t)).

® Theorem reduces conjecture to proving that these solution cannot exist!

This is reasonable, variational arguments show that @ is the ‘smallest’
solution to AQ = —@Q53.
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Partial Progress

Theorem (C.2024)

If scattering fails, then there must exist a global solution (¢, ¢) to the Zakharov
equation and a trajectory z(t) : R — R* such that

(1) The solution (¢, ¢) lies below the ground state

Ez(¢,9) < E(Q,—Q7), ilelllR? ()| L2 sy < |Q%]| L2(Ra).-

(2) The solutions (v, ¢)(t, x) are stationary modulo translations, in the sense
that they remain concentrated in some neighborhood of the trajectory x(t).

e |n radial case, must have z(¢) = 0, and can rule out solutions via a virial
estimate which is (morally) of the form

/ / |¢|2dxdt < oo Guo-Nakanishi2022.
R J|z|<R
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Partial Progress

Theorem (C.2024)

If scattering fails, then there must exist a global solution (¢, ¢) to the Zakharov
equation and a trajectory z(t) : R — R* such that

(1) The solution (¢, ¢) lies below the ground state
Ez(1,0) < E(Q,—Q?), sup 6() | L2re) < |Q? | L2 (ra)-
€

(2) The solutions (v, ¢)(t, ) are stationary modulo translations, in the sense
that they remain concentrated in some neighborhood of the trajectory ().

¢ |n radial case, must have z(¢) = 0, and can rule out solutions via a virial
estimate which is (morally) of the form

/ / |2 dxdt < oo Guo-Nakanishi2022.
R J|z|<R
Why? If solution stayed localised around |z| < R, then essentially have

/ |4|?dx ~ constant = / / |¢|?dxdt = oo, contradiction!
|lz|<R R J|z|<R
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Ideas in proof: threshold
Simplify set up slightly:

Conjecture: If £z (u, V) < £2(Q, —Q?) then solution is global and scatters.

J

By small data theory, for small E, we have implication
Ex(f,9) <E = solution is global and scatters.

Now consider what happens if we make E larger.
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Ideas in proof: threshold
Simplify set up slightly:

Conjecture: If £z (u, V) < £2(Q, —Q?) then solution is global and scatters.

J

By small data theory, for small E, we have implication
Ex(f,9) <E = solution is global and scatters.

Now consider what happens if we make E larger.

Can'ttake E = £7(Q, —Q?) as we assume conjecture fails!
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Ideas in proof: threshold
Simplify set up slightly:

Conjecture: If £z (u, V) < £2(Q, —Q?) then solution is global and scatters.

By small data theory, for small £, we have implication
Es(f,9) < E = solution is global and scatters.

Now consider what happens if we make E larger.
Can'ttake £ = £7(Q, —Q?) as we assume conjecture fails!

So must exist some threshold E* < £7(Q, —Q?) such that
(1) IfE(f,g) < E* then solution is global and scatters.
(2) Above threshold scattering fails.

Unpacking (2) we see that there exists sequence (f,, g) s.t.
lim,, o0 £z (fn, gn) = E* and corresponding solution (u,,, V,,) does not scatter.
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Ideas in proof: concentration compactness

(1) £ E4(f,g) < E* then solution is global and scatters.

(2) There exists sequence (fn, gn) S.t. limy, o0 E2(fn, gn) = E* and solution
(un, Vi) does not scatter.

Next step is to extract convergent subsequence from (f.., gn)-
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Ideas in proof: concentration compactness

(1) £ E4(f,g) < E* then solution is global and scatters.

(2) There exists sequence (fn, gn) S.t. limy, o0 E2(fn, gn) = E* and solution
(un, Vi) does not scatter.

Next step is to extract convergent subsequence from (f.., gn)-

® Sequence is bounded and bounded sequences in finite dimensional spaces
have convergent subsequences (Bolzano-Weierstrass!)
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Ideas in proof: concentration compactness

(1) £ Ez(f,g) < E* then solution is global and scatters.

(2) There exists sequence (fn, gn) S.t. lim, oo E2(frn, 9n) = E* and solution
(un, V) does not scatter.

Next step is to extract convergent subsequence from (f,., g)-

® Sequence is bounded and bounded sequences in finite dimensional spaces
have convergent subsequences (Bolzano-Weierstrassl)

® Unfortunately sequence is only bounded in infinite dimensional space
HY(R*Y) x L2(R%).

* To extract limit (f, g) need to argue via concentration compactness which
quantifies the loss of compactness (Lions1985, Gérard1998,
Keraani2001).

Define (1, ¢) as solution with data (f, g), then £z (¢, ¢) = E* lies on threshold.J

Timothy Candy — Harmonic Analysis and Dispersive PDE 23 / 26



Ideas in proof: solution at threshold must be concentrated

Final goal is to prove that (¢, ¢) is not dispersive in the sense that it remains
concentrated around some trajectory x(t). J

How is this done? Well if (¢, ¢) was not concentrated, then we could decompose

(¥, @) = (1, ¢1) + (2, d2)

with (1, ¢;) solutions concentrated in separated regions.
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Ideas in proof: solution at threshold must be concentrated

Final goal is to prove that (¢, ¢) is not dispersive in the sense that it remains
concentrated around some trajectory x(t). J

How is this done? Well if (¢, ¢) was not concentrated, then we could decompose

(¥, @) = (1, ¢1) + (2, d2)

with (1, ¢;) solutions concentrated in separated regions.
But then
Ez (Y, d) = Ez (Y1, 1) + E2 (Y2, o)

and so (¢, ¢1) and (1, ¢2) both have energy below threshold E*

= (1;, ¢;) scatter by definition of threshold E*
= (¢, ¢) ~ (¢1,¢1) + (2, ¢2) also scatters.

Contradiction!
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Ideas in proof: solution at threshold must be concentrated

Final goal is to prove that (¢, ¢) is not dispersive in the sense that it remains
concentrated around some trajectory x(t). J

® Above strategy closely related to original induction on energy argument
introduced by Bourgain1999.

® Applying concentration compactness and extracting threshold solutions is a
key tool in studying asymptotic behaviour of dispersive PDE
Kenig-Merle2006, Killip-Visan2010, Dodson2019,...

® |mplementation in Zakharov case difficult as required estimates are very
delicate.

In fact progress on Zakharov equation only possible due to recent developments
in Harmonic analysis which have lead to robust bilinear restriction estimates
Tao02001, Lee-Vargas2008, Bejenaru2019, C.2019, ...
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Quick summary of strategies

® Exploit iterative/perturbative arguments to prove implication

Good estimates for linear problem

—> understand dynamics of nonlinear problem.

Main issue: Only works when linear problem is a good approximation of
nonlinear problem.
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Quick summary of strategies

® Exploit iterative/perturbative arguments to prove implication

Good estimates for linear problem
—> understand dynamics of nonlinear problem.

Main issue: Only works when linear problem is a good approximation of
nonlinear problem.

® To understand dynamics of large data we
(1) Run induction on energy to reduce to solutions at threshold

— solutions at threshold must concentrate.

(2) Rule out concentrating/soliton like solutions via conservation laws/monotonicity
formula.

Currently step (2) still work in progress for Zakarov equation.
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Thank you for listening!
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